Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (2): 30-37    DOI: 10.13523/j.cb.20180205
研究报告     
新型R-扁桃酸脱氢酶的基因挖掘及表达鉴定 *
唐存多1,2*,史红玲1*,马越1,丁朋举1,许建和2**(),阚云超1**(),姚伦广1**()
1 南阳师范学院昆虫生物反应器河南省工程实验室和河南省南水北调中线水源区生态安全重点实验室 南阳 473061
2华东理工大学生物反应器工程国家重点实验室 上海 200237
Gene Mining, Expression and Characterization of Novel R-mandelate Dehydrogenases
Cun-duo TANG1,2*,Hong-ling SHI1*,Yue MA1,Peng-ju DING1,Jian-he XU2**(),Yun-chao KAN1**(),Lun-guang YAO1**()
1 Henan Provincial Engineering Laboratory of Insect Bio-reactor and Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North, Nanyang Normal University, Nanyang 473061, China
2 State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
 全文: PDF(710 KB)   HTML
摘要:

R-扁桃酸脱氢酶在苯乙酮酸的生物合成中起着关键的作用,挖掘具有高催化活性及稳定性的新型R-扁桃酸脱氢酶具有重要的意义。为了获得理想的R-扁桃酸脱氢酶,采用了基因组挖矿技术从Lactobacillus harbinensis菌株中获得了一个新型的R-扁桃酸脱氢酶LhDMDH,重组LhDMDH的比酶活高达1264.3 U/mg,约为探针的4倍,在已报道的R-扁桃酸脱氢酶中处于领先水平。同时,考察了4个重组酶主要的酶学特性,它们的最适反应温度在25~30℃,最适反应pH在9.0~9.5。动力学参数的结果表明,LhDMDH对底物的Kcat值为30.28 S -1,明显高于其它重组酶。此外,底物谱分析的结果也表明LhDMDH在外消旋扁桃酸的手性拆分及苯乙酮酸的生物合成中更具优势。在R-扁桃酸脱氢酶基因挖掘方面取得了较为理想的结果,为进一步的改造及应用奠定了坚实的基础,也为其它酶的挖掘提供了可资借鉴的经验。

关键词: 扁桃酸脱氢酶基因组挖矿表达酶学特性生物催化    
Abstract:

R-mandelate dehydrogenase plays a key role in the biosynthesis of phenylglyoxylic acid, thus exploiting nove R-mandelate dehydrogenase with higher catalytic activity and stability has significant economic value. In order to obtain the perfect R-mandelate dehydrogenase, a novel R-mandelate dehydrogenase was obtained by genome mining, named as LhDMDH, which was from Lactobacillus harbinensis. The specific activity of LhDMDH was 1264.3 U/mg, which was near to four times that of the probe and leading in the reported enzyme. Meanwhile, the main enzymatic characterizations of the four recombinant enzymes were researched. Their temperature optima were 25 to 30 ℃, and their pH optima were 9.0 to 9.5. The Kcat of LhDMDH is 30.28 S -1, which is obviously higher than the others. In addtion, the results of substrate spectrum of R-mandelate dehydrogenases indicated that the LhDMDH could have advantages over other enzymes in chiral resolution of racemic mandelic acid and the biosynthesis of phenylglyoxylic acid. This gained ideal results in genome mining of R-mandelate dehydrogenases, established a solid foundation for further transformation and application, and provided a useful experience for the exploiting of other enzymes.

Key words: Mandelate dehydrogenase    Genome mining    Expression    Enzymatic characterization    Biocatalysis
收稿日期: 2017-10-24 出版日期: 2018-03-21
ZTFLH:  Q819  
基金资助: * 国家自然科学基金(31372381);河南省科技攻关项目(162102210116);河南省科研服务平台专项(2016151);河南省南水北调中线水源区水生态安全创新型科技团队专项资助项目(17454)
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
唐存多
史红玲
马越
丁朋举
许建和
阚云超
姚伦广

引用本文:

唐存多,史红玲,马越,丁朋举,许建和,阚云超,姚伦广. 新型R-扁桃酸脱氢酶的基因挖掘及表达鉴定 *[J]. 中国生物工程杂志, 2018, 38(2): 30-37.

Cun-duo TANG,Hong-ling SHI,Yue MA,Peng-ju DING,Jian-he XU,Yun-chao KAN,Lun-guang YAO. Gene Mining, Expression and Characterization of Novel R-mandelate Dehydrogenases. China Biotechnology, 2018, 38(2): 30-37.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20180205        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I2/30

Primer name Product description Primer sequence (5'-3') Accession number
SeDMDH-F DMDH from Salmonella enterica CGCGGATCCATGAAAATTGCAATCGCAGG WP_058112521.1
SeDMDH-R CCGCTCGAGTTGCGCTTCTTTAGCGTGAA
LlDMDH1-F DMDH1 from Lactococcus lactis CGCGGATCCATGAAAATCGCAATAGCAGG WP_075525716.1
LlDMDH1-R CCGCTCGAGATGCGCCTCTAAAATTTCTTC
LlDMDH2-F DMDH2 from Lactococcus lactis CGCGGATCCATGAGAATCACAATTGCCGGT WP_011676318.1
LlDMDH2-R CCGCTCGAGTTTCGCCTTTAATAACTCTT
SaDMDH-F DMDH from Staphylococcus aureus CGCGGATCCATGTACAAAATAGCCATAG WP_031797626.1
SaDMDH-R CCGCTCGAGTAATTTTGATTCTAATTGGT
Primer name Product description Primer sequence (5'-3') Accession number
KoDMDH-F DMDH from Klebsiella oxytoca CGCGGATCCATGAAAATTGCAATCGCAG WP_004104561.1
KoDMDH-R CCGCTCGAGTTGCGCTTCTTTTGCGTGAAT
LcDMDH-F DMDH from Leuconostoc citreum CGCGGATCCATGAAAATAGCTATTGCAGGA WP_036058586.1
LcDMDH-R CCGCTCGAGAATTTCAAAGTTTTCTTGCT
表1  新型R-扁桃酸脱氢酶基因克隆及表达所需的引物
图1  4个R-扁桃酸脱氢酶基因的PCR扩增
图2  重组大肠杆菌的菌落PCR鉴定
图3  代表性重组R-扁桃酸脱氢酶的SDS-PAGE分析
图4  重组R-扁桃酸脱氢酶的最适温度
图5  重组R-扁桃酸脱氢酶的温度稳定性
图6  重组R-扁桃酸脱氢酶的最适pH
图7  重组R-扁桃酸脱氢酶的pH稳定性
Enzyme Kinetic parameter of substrate
Km (mmol/L) Kcat (S-1) Ki (mmol/L) Kcat/Km (S-1 mmol/L-1)
LbDMDH 1.45 8.82 24.37 6.08
LhDMDH 1.05 30.28 26.40 28.80
LcDMDH 1.75 1.56 24.86 0.89
LlDMDH-2 1.00 2.29 16.25 2.29
表2  R-扁桃酸脱氢酶对R-扁桃酸的动力学参数
Enzyme Kinetic parameter of NAD+
Km (mmol/L) Kcat (S-1) Ki (mmol/L) Kcat/Km (S-1 mmol/L-1)
LbDMDH 0.78 9.23 N 11.83
LhDMDH 0.40 29.05 N 72.00
LcDMDH 0.85 1.86 N 2.19
LlDMDH-2 0.42 1.85 N 4.40
表3  R-扁桃酸脱氢酶对NAD+的动力学参数
Substrate Relative activity (%)
LbDMDH LhDMDH LcDMDH LlDMDH-2
R-mandelate acid 100 100 100 100
R-2-chloromandelic acid 0.59 0.28 2.51 0.05
S-mandelate acid 0.04 0.02 0 0
S-2-chloromandelic acid 0 0 0 0
L-lactic acid 0 0 0 0
表4  R-扁桃酸脱氢酶的底物谱
[1] 张捷龙, 雷进海 . 苯甲酰甲酸的合成与应用. 浙江化工, 2008(12):13-15.
doi: 10.3969/j.issn.1006-4184.2008.12.006
Zhang J L, Lei J H . Synthesis and application of benzoylformic acid. Zhejiang Chemical Industry, 2008(12):13-15.
doi: 10.3969/j.issn.1006-4184.2008.12.006
[2] 戴志宏 . 苯甲酰甲酸及其甲酯的合成. 合肥: 合肥工业大学, 2012.
Dai Z H . Synthesis of benzoylformic acid and its methyl ester. Hefei: Hefei University of Technology, 2012.
[3] 曾侦 . 扁桃酸消旋酶和扁桃酸脱氢酶基因的克隆及表达. 南京: 南京理工大学, 2009.
doi: 10.7666/d.y1542527
Zhen Z . Cloning and expression of mandelate racemase gene and S-mandelate dehydrogenase. Nanjing: Nanjing University of Science and Technology, 2009.
doi: 10.7666/d.y1542527
[4] Wang J, Feng J, Li W , et al. Characterization of a novel (R)-mandelate dehydrogenase from Pseudomonas putida NUST506. J Mol Catal B: Enzym, 2015,120:23-27.
doi: 10.1016/j.molcatb.2015.04.017
[5] 范长伟 . D-扁桃酸脱氢酶的基因挖掘及在多酶偶联合成L-苯甘氨酸的应用. 上海:华东理工大学, 2014.
Fan C W . Discovery and application of novel D-mandelate dehydrogenase in multienzymatic synthesis of L-phenylglycine. Shanghai: East of China University of Science and Technology, 2014.
[6] Yamazaki Y, Maeda H . Enzymatic synthesis of optically pure (R)-mandelic acid and other 2-hydroxycarboxylic acids: Screening for the enzyme, and its purification, characterization and use. Agricultural and Biological Chemistry, 1986,50(10):2621-2631.
doi: 10.1080/00021369.1986.10867782
[7] Hummel W, Schütte H, Kula M R . Mandelic acid dehydrogenase from Lactobacillus curvatus. Appl Microbiol Biotechnol, 1988,28(4):433-439.
doi: 10.1007/BF00268209
[8] Fan C W, Xu G C, Ma B D , et al. A novel D-mandelate dehydrogenase used in three-enzyme cascade reaction for highly efficient synthesis of non-natural chiral amino acids. J Biotechnol, 2015,195:67-71.
doi: 10.1016/j.jbiotec.2014.10.026 pmid: 25449542
[9] 唐存多, 史红玲, 蔚晓华 , 等. 新型GH5家族β-甘露聚糖酶的基因挖掘及表达鉴定. 食品科学, 2016,37(11):90-96.
doi: 10.7506/spkx1002-6630-201611016
Tang C D, Shi H L, Yu X H , et al. Gene mining, expression and characterization of novel GH5 family β-mannanases. Food Science, 2016,37(11):90-96.
doi: 10.7506/spkx1002-6630-201611016
[10] 唐存多, 史红玲, 唐青海 , 等. 生物催化剂发现与改造的研究进展. 中国生物工程杂志, 2014,34(9):113-121.
doi: 10.13523/j.cb.20140917
Tang C D, Shi H L, Tang Q H . Rencent trends in discovery and protein engineering of biocatalysts. China Biotechnology, 2014,34(9):113-121.
doi: 10.13523/j.cb.20140917
[11] Furuya T, Kino K . Genome mining approach for the discovery of novel cytochrome P450 biocatalysts. Appl Microbiol Biotechnol, 2010,86(4):991-1002.
doi: 10.1007/s00253-010-2450-5 pmid: 20177889
[12] Gong J S, Lu Z M, Li H , et al. Metagenomic technology and genome mining: emerging areas for exploring novel nitrilases. Appl Microbiol Biotechnol, 2013,97(15):6603-6611.
doi: 10.1007/s00253-013-4932-8 pmid: 23801047
[13] Tang C D, Shi H L, Tang Q H , et al. Genome mining and motif truncation of glycoside hydrolase family 5 endo-beta-1, 4-mannanase encoded by Aspergillus oryzae RIB40 for potential konjac flour hydrolysis or feed additive. Enzyme Microb Technol, 2016, 93- 94:99-104.
[14] Xiao Z, Wu M, Grosse S , et al. Genome mining for new alpha-amylase and glucoamylase encoding sequences and high level expression of a glucoamylase from Talaromyces stipitatus for potential raw starch hydrolysis. Appl Biochem Biotechnol, 2014,172(1):73-86.
doi: 10.1007/s12010-013-0460-3 pmid: 24046254
[15] Zhu D, Mukherjee C, Biehl E R , et al. Discovery of a mandelonitrile hydrolase from Bradyrhizobium japonicum USDA110 by rational genome mining. J Biotechnol, 2007,129(4):645-650.
doi: 10.1016/j.jbiotec.2007.02.001 pmid: 17350705
[16] Barriuso J, Prieto A, Martínez M J . Fungal genomes mining to discover novel sterol esterases and lipases as catalysts. BMC Genomics, 2013,14:712.
doi: 10.1186/1471-2164-14-712 pmid: 24138290
[17] 马晨露, 唐存多, 史红玲 , 等. 头孢菌素C乙酰化酶的半理性改造及7-ACA的生物合成. 中国生物工程杂志, 2015,35(12):65-71.
doi: 10.13523/j.cb.20151210
Ma C L, Tang C D, Shi H L , et al. Semi rational modification of cephalosporin C acylase and biosynthesis of 7-ACA. China Biotechnology, 2015,35(12):65-71.
doi: 10.13523/j.cb.20151210
[18] Hu D, Tang C, Li C , et al. Stereoselective hydrolysis of epoxides by reVrEH3, a novel Vigna radiata epoxide hydrolase with high enantioselectivity or high and complementary regioselectivity. J Agr Food Chem, 2017,65(45):9861-9870.
doi: 10.1021/acs.jafc.7b03804 pmid: 29058432
[19] Tang C D, Li J F, Wei X H , et al. Fusing a carbohydrate-binding module into the Aspergillus usamii β-mannanase to improve its thermostability and cellulose-binding capacity by In Silico Design. Plos One, 2013,8(5):e64766.
doi: 10.1371/journal.pone.0064766 pmid: 23741390
[1] 贺立恒,张毅,张洁,任豫超,解红娥,唐锐敏,贾小云,武宗信. 基于转录组和WGCNA的甘薯花青素合成相关基因共表达网络的构建及核心基因的挖掘*[J]. 中国生物工程杂志, 2021, 41(9): 27-36.
[2] 乔圣泰,王曼琦,徐慧妮. 番茄SlTpx原核表达蛋白的体外功能分析*[J]. 中国生物工程杂志, 2021, 41(8): 25-32.
[3] 李冰,张传波,宋凯,卢文玉. 生物合成稀有人参皂苷的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 71-88.
[4] 王惠临,周凯强,朱红雨,王力景,杨仲璠,徐明波,曹荣月. 凝血因子VII及其重组表达新进展[J]. 中国生物工程杂志, 2021, 41(2/3): 129-137.
[5] 张磊,唐永凯,李红霞,李建林,徐逾鑫,李迎宾,俞菊华. 促进原核表达蛋白可溶性的研究进展 *[J]. 中国生物工程杂志, 2021, 41(2/3): 138-149.
[6] 刘美琴,高博,焦月盈,李玮,虞结梅,彭向雷,郑妍鹏,付远辉,何金生. 人呼吸道合胞病毒感染的A549细胞中长链非编码RNA表达谱研究[J]. 中国生物工程杂志, 2021, 41(2/3): 7-13.
[7] 杨茜,栾雨时. sly-miR399在番茄抗晚疫病中的初步探究*[J]. 中国生物工程杂志, 2021, 41(11): 23-31.
[8] 陈素芳,夏明印,曾丽艳,安晓琴,田敏芳,彭建. 抗菌肽Cec4a的重组表达和抗菌活性研究*[J]. 中国生物工程杂志, 2021, 41(10): 12-18.
[9] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[10] 饶海密,梁冬梅,李伟国,乔建军,财音青格乐. 真菌芳香聚酮化合物的合成生物学研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 52-61.
[11] 邓通,周海胜,吴坚平,杨立荣. 基于分子伴侣策略提高NADPH依赖型醇脱氢酶的异源可溶性表达 *[J]. 中国生物工程杂志, 2020, 40(8): 24-32.
[12] 张潇航,李媛媛,贾敏晅,顾奇. 弹性蛋白样生物材料的制备及性质鉴定 *[J]. 中国生物工程杂志, 2020, 40(8): 33-40.
[13] 吕一凡,李更东,薛楠,吕国梁,时邵辉,王春生. LbCpf1基因的原核表达、纯化与体外切割检测 *[J]. 中国生物工程杂志, 2020, 40(8): 41-48.
[14] 蒋丹丹,王云龙,李玉林,张怡青. 含RGD修饰的病毒样颗粒递送ICG靶向肿瘤的研究 *[J]. 中国生物工程杂志, 2020, 40(7): 22-29.
[15] 程旭,杨雨睛,吴赛男,侯勤龙,李咏梅,韩慧明. 金黄色葡萄球菌SarAIcaA及其融合基因的DNA疫苗构建及在小鼠免疫应答中的初步研究 *[J]. 中国生物工程杂志, 2020, 40(7): 41-50.