Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (10): 118-125    DOI: 10.13523/j.cb.20171016
综述     
衣藻叶绿体表达重组蛋白及表达优化策略
林优红, 程霞英, 严依雯, 梁宗锁, 杨宗岐
浙江理工大学生命科学学院 杭州 310018
Expression and Optimization Strategy of Recombinant Proteins in Chlamydomonas Chloroplast
LIN You-hong, CHENG Xia-ying, YAN Yi-wen, LIANG Zong-suo, YANG Zong-qi
College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
 全文: PDF(460 KB)   HTML
摘要: 近年来,转基因技术已日趋成熟,医学、工业上的应用也越来越广泛。以重组蛋白为基础的药物治疗是目前医药生产领域发展最快的一项技术。它们的高特异性和低副作用使得治疗效率十分突出。但是重组蛋白表达的复杂性也给生产带来了一定限制。为了促进重组蛋白的应用,人们对适宜其表达的系统和能促进其表达的策略进行了探索。研究发现,衣藻叶绿体作为重组蛋白的生物反应器,能实现重组蛋白快速、高效、低成本生产。同时,衣藻能在人工培养基和人为控制的条件下生长,降低了受污染的风险,与传统的生产系统比较具有不可比拟的优越性。因此,衣藻叶绿体作为医药重组蛋白生物反应器在未来的生物技术领域将发挥巨大作用。
关键词: 重组蛋白生物反应器表达优化衣藻叶绿体    
Abstract: In recent years, transgenic technology has developed rapidly, and it has found an increasingly wide utilization in medical and industrial fields. Drug therapy which based on recombinant proteins is the fastest growing technology in pharmaceutical production areas. Their high specificity and low side effect makes treatment efficiency very prominent. However, the complexity of recombinant proteins synthesis also bring production to a certain restrictions. In order to promote the application of these recombinant proteins, expression systems that fit it and strategies that can facilitate it were explored. Compared to other traditional production systems, the research found that Chlamydomonas chloroplast as a bioreactor has several incomparable advantages, it can achieve more rapidly, high yields, lower cost on the production of recombinant proteins, and can be grown in artificial medium and artificially controlled conditions, which reduce the risk of contamination. Through the application of some new techniques, synthesis of recombinant proteins has also been improved. Therefore,Chlamydomonas chloroplast will play a great role in the field of biotechnology in the future as a recombinant proteins with pharmaceutical relevance bioreactor. The expression of recombinant proteins and the optimization strategies in Chlamydomonas chloroplast were reviewed.
Key words: Algal chloroplast    Optimization strategy    Bioreactor    Recombinant proteins
收稿日期: 2017-04-17 出版日期: 2017-10-25
ZTFLH:  Q819  
基金资助: 浙江省自然科学基金(LY15C020005)、国家自然科学基金(31570370)资助项目
通讯作者: 杨宗岐,yangzongqi@zstu.edu.cn     E-mail: yangzongqi@zstu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
林优红
严依雯
梁宗锁
杨宗岐
程霞英

引用本文:

林优红, 程霞英, 严依雯, 梁宗锁, 杨宗岐. 衣藻叶绿体表达重组蛋白及表达优化策略[J]. 中国生物工程杂志, 2017, 37(10): 118-125.

LIN You-hong, CHENG Xia-ying, YAN Yi-wen, LIANG Zong-suo, YANG Zong-qi. Expression and Optimization Strategy of Recombinant Proteins in Chlamydomonas Chloroplast. China Biotechnology, 2017, 37(10): 118-125.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20171016        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I10/118

[1] Mayfield S P, Manuell A L, Chen S, et al. Chlamydomonas reinhardtii chloroplasts as protein factories. Current Opinion in Biotechnology, 2007, 18(2):126-133.
[2] Specht E, Miyake-Stoner S, Mayfield S. Micro-algae come of age as a platform for recombinant protein production. Biotechnology Letters, 2010, 32(10):1373-1383.
[3] Bock R. Plastid biotechnology:prospects for herbicide and insect resistance, metabolic engineering and molecular farming. Current Opinion in Biotechnology, 2007, 18(2):100-106.
[4] 韩四海, 胡章立, 王潮岗. 外源基因在莱茵衣藻叶绿体中的表达. 生物技术通报, 2007, (1):89-94. Han S H, Hu Z L, Wang C G. Exppession of foreign genes in Chlamydomonas reinhardtii chloroplast.Biotechnology Bulletin, 2007, 1:89-94.
[5] Rasala B A, Mayfield S P. Photosynthetic biomanufacturing in green algae; production of recombinant proteins for industrial, nutritional, and medical uses. Photosynthesis Research, 2015, 123(3):227-239.
[6] Rochaix J D. Chlamydomonas reinhardtii as the photosynthetic yeast. Annual Review of Genetics, 1995, 29(1):209-230.
[7] Maul J E, Lilly J W, Cui L, et al. The Chlamydomonas reinhardtii plastid chromosome:islands of genes in a sea of repeats. Plant Cell, 2002, 14(11):2659-2679.
[8] Goldschmidtclermont M. Transgenic expression of aminoglycoside adenine transferase in the chloroplast:a selectable marker of site-directed transformation of Chlamydomonas. Nucleic Acids Research, 1991, 19(15):4083-4089.
[9] Minko I, Holloway S P, Nikaido S, et al. Renilla luciferase as a vital reporter for chloroplast gene expression in Chlamydomonas. Molecular Genetics and Genomics, 1999, 262(3):421-425.
[10] Franklin S, Ngo B, Efuet E, et al. Development of a GFP reporter gene for Chlamydomonas reinhardtii chloroplast. Plant Journal, 2002, 30(6):733-744.
[11] Sun M, Qian K, Su N, et al. Foot-and-mouth disease virus VP1 protein fused with cholera toxin B subunit expressed in Chlamydomonas reinhardtii chloroplast. Biotechnology Letters, 2003, 25(13):1087-1092.
[12] Mayfield S P, Schultz J. Development of a luciferase reporter gene, luxCt, for Chlamydomonas reinhardtii chloroplast. Plant Journal, 2004, 37(3):449-458.
[13] 苏忠亮. 一种抗肿瘤蛋白基因在衣藻叶绿体中的重组与表达. 浙江大学, 2005. Su Z L. The Recombination and heterogeneous expression of an anti-tumor gene in the chloroplast of Chlamydomonas reinhardtii.Hangzhou:Zhejiang University, 2005.
[14] 杨宗岐, 李轶女, 张志芳, 等. 来源于 Pyrococcus furiosus的耐高温 α-淀粉酶基因在衣藻叶绿体中的表达. 生物工程学报, 2006, 22(4):545-549. Yang Z Q, Li Y N, Zhang Z F,et al. Expression of the gene coding for a thermostable α-amylase from Pyrococcus furious in Chlamydomonas reinhardtii chloroplast.Chinese Journal of Biotechnology, 2006, 22(4):545-549.
[15] 杨宗岐, 李轶女, 陈凤, 等. 人可溶性TRAIL蛋白在衣藻叶绿体中的表达. 科学通报, 2006, 51(12):1400-1405. Yang Z Q, Li Y N, Chen F, et al. Expression of human soluble TRAIL protein in Chlamydomonas reinhardtii chloroplast. Chinese Science Bulletin, 2006, 51(12):1400-1405.
[16] 赵雅坤, 史贤明, 张忠明. 人白细胞介素4在衣藻叶绿体中的高效转化及表达. 华中农业大学学报, 2006, 25(2):110-116. Zhao Y K, Shi X M, Zhang Z M. Efficient transformation and expression of human interleukin-4 in Chlamydomonas reinhardtii chloroplast.Journal of Huazhong Agricultural University, 2006, 25(2):110-116.
[17] Wang X, Brandsma M, Tremblay R, et al. A novel expression platform for the production of diabetes-associated autoantigen human glutamic acid decarboxylase (hGAD65). BMC Biotechnology, 2008, 8(1):87.
[18] 刘国宪. 狂犬病G,N抗原基因在衣藻叶绿体中的定点重组和表达. 北京:首都师范大学, 2009. Liu G X. Site-specific recombination and expression of rabies virus G and N antigentic genes in chloroplast of Chlamydomonas reinhardtii. Beijing:Capital Normal University, 2009.
[19] Gregory J A, Li F, Tomosada L M, et al. Algae-produced Pfs25 elicits antibodies that inhibit malaria transmission. PLoS One, 2012, 7(5):e37179.
[20] Tran M, Van C, Barrera D J, et al. Production of unique immunotoxin cancer therapeutics in algal chloroplasts. Proceedings of the National Academy of Sciences, 2012, 110(1):15-22.
[21] Gregory J A, Topol A B, Doerner D Z, et al. Alga-produced cholera toxin-Pfs25 fusion proteins as oral vaccines. Applied & Environmental Microbiology, 2013, 79(13):3917-3925.
[22] Demurtas O C, Massa S, Ferrante P, et al. A Chlamydomonas-derived human papillomavirus 16 E7 vaccine induces specific tumor protection. PloS One, 2013, 8(4):e61473.
[23] Barrera D J, Rosenberg J N, Chiu J G, et al. Algal chloroplast produced camelid VHH antitoxins are capable of neutralizing botulinum neurotoxin. Plant Biotechnology Journal, 2015, 13(1):117-124.
[24] Ochoa-Méndez C E, Lara-Hernández I, González L M, et al. Bioactivity of an antihypertensive peptide expressed in Chlamydomonas reinhardtii. Journal of Biotechnology, 2016, 240:76-84.
[25] Beltrán-López J I, Romero-Maldonado A, Monreal-Escalante E,et al. Chlamydomonas reinhardtii chloroplasts express an orally immunogenic protein targeting the p210 epitope implicated in atherosclerosis immunotherapies. Plant Cell Reports, 2016, 35(5):1133-1141.
[26] Chen H C, Melis A. Marker-free genetic engineering of the chloroplast in the green microalga Chlamydomonas reinhardtii. Plant Biotechnology Journal, 2013, 11(7):818-828.
[27] Gangl D, Zedler J A, W?odarczyk A, et al. Expression and membrane-targeting of an active plant cytochrome P450 in the chloroplast of the green alga Chlamydomonas reinhardtii. Phytochemistry, 2015, 110:22-28.
[28] Almaraz-Delgado A L, Flores-Uribe J, Pérez-Espa?a V H, et al. Production of therapeutic proteins in the chloroplast of Chlamydomonas reinhardtii. AMB Express, 2014, 4:57.
[29] Bertalan I, Munder M C, Wei? C, et al. A rapid, modular and marker-free chloroplast expression system for the green alga Chlamydomonas reinhardtii. Journal of Biotechnology, 2015, 195:60-66.
[30] Manuell A L, Beligni M V, Elder J H, et al. Robust expression of a bioactive mammalian protein in Chlamydomonas chloroplast. Plant Biotechnology Journal, 2007, 5(3):402-412.
[31] Muto M, Henry R E, Mayfield S P. Accumulation and processing of a recombinant protein designed as a cleavable fusion to the endogenous Rubisco LSU protein in Chlamydomonas chloroplast. BMC Biotechnology, 2009, 9:26.
[32] Ishikura K, Takaoka Y, Kato K, et al. Expression of a foreign gene in Chlamydomonas reinhardtii chloroplast. J Biosci Bioeng, 1999, 87(3):307-314.
[33] Barnes D, Franklin S, Schultz J, et al. Contribution of 5'-and 3'-untranslated regions of plastid mRNAs to the expression of Chlamydomonas reinhardtii chloroplast genes. Molecular Genetics and Genomics, 2005, 274(6):625-636.
[34] Kasai S, Yoshimura S, Ishikura K, et al. Effect of coding regions on chloroplast gene expression in Chlamydomonas reinhardtii. J Biosci Bioeng, 2003, 95(3):276-282.
[35] Surzycki R, Greenham K, Kitayama K, et al. Factors effecting expression of vaccines in microalgae. Biologicals, 2009, 37(3):133-138.
[36] Wu S, Xu L, Huang R, et al. Improved biohydrogen production with an expression of codon-optimized hemH and lba genes in the chloroplast of Chlamydomonas reinhardtii. Bioresource Technology, 2011, 102(3):2610-2616.
[37] Johnson E A. Monitoring foreign gene incorporation into the plastome of Chlamydomonas reinhardtii by multiplex qPCR. Photosynthesis Research, 2013, 115(1):81-87.
[38] Zedler J A, Gangl D, Guerra T, et al. Pilot-scale cultivation of wall-deficient transgenic Chlamydomonas reinhardtii strains expressing recombinant proteins in the chloroplast. Applied Microbiology and Biotechnology, 2016, 100(16):7061-7070.
[1] 靳露,周航,曹云,王振守,曹荣月. 高通量灌流培养模型在生物工艺开发中的应用研究[J]. 中国生物工程杂志, 2020, 40(8): 63-73.
[2] 梁振鑫,刘芳,张玮,刘庆友,李力. 抗p185 erb B2人鼠嵌合抗体ChAb26转基因小鼠乳腺生物反应器的制备与验证 *[J]. 中国生物工程杂志, 2019, 39(8): 40-51.
[3] 郭玉蕾,唐亮,孙瑞强,李尤,陈依军. 高通量微型生物反应器的研究进展[J]. 中国生物工程杂志, 2018, 38(8): 69-75.
[4] 李亚芳,赵颖慧,刘赛宝,王伟,曾为俊,王金泉,陈洪岩,孟庆文. 鸡OV启动子表达HA对禽流感病毒攻击提供完全保护 *[J]. 中国生物工程杂志, 2018, 38(7): 67-74.
[5] 孙静静,周伟伟,周雷鸣,赵巧辉,李桂林. 杂交瘤细胞体外大规模培养研究进展[J]. 中国生物工程杂志, 2018, 38(10): 82-89.
[6] 王佩, 陈凯, 高嵩. 利用CpG DNA甲基化酶M.Sss I共表达载体制备限制性内切酶Not I[J]. 中国生物工程杂志, 2017, 37(8): 51-58.
[7] 冯雪, 高香, 牛纯青, 刘堰. 密码子优化后的αB-晶状体蛋白基因毕赤酵母重组质粒的构建及表达的初步研究[J]. 中国生物工程杂志, 2017, 37(7): 42-47.
[8] 刘延娟, 李旭娟, 袁航, 刘娴, 高艳秀, 龚明, 邹竹荣. 融合酰基载体蛋白可增强大肠杆菌重组蛋白的可溶性和热稳定性[J]. 中国生物工程杂志, 2017, 37(7): 115-123.
[9] 苏晓蕊, 李伟国, 王延辉, 高晓静, 闪伊红, 谭菲菲, 李向东, 田克恭. 重组杆状病毒细小VP2蛋白40L生物反应器放大工艺研究[J]. 中国生物工程杂志, 2017, 37(10): 60-64.
[10] 杨思源, 潘敬梅, 王硕, 邓开轩, 邓强, 黄新河, 李学如. 化脓性链球菌溶血素O活性结构重组蛋白的制备[J]. 中国生物工程杂志, 2016, 36(6): 51-56.
[11] 刘婷婷, 梁梓强, 梁士可, 郭技星, 王方海. 利用生物工程技术生产蜘蛛丝的研究进展[J]. 中国生物工程杂志, 2016, 36(5): 132-137.
[12] 赵绘存. 基于专利信息可视化的生物反应器发展态势分析[J]. 中国生物工程杂志, 2016, 36(1): 115-121.
[13] 邱丽娟, 赵玉娇, 李多, 黄新伟, 王晓丹, 席珏敏, 潘玥, 陈俊英, 孙强明. 登革病毒四型联合重组包膜蛋白III区的表达和免疫原性鉴定[J]. 中国生物工程杂志, 2016, 36(1): 1-6.
[14] 张丹凤, 余自青, 吴锁伟, 饶力群, 万向元. 植物生物反应器在分子医药农业中的应用[J]. 中国生物工程杂志, 2016, 36(1): 86-94.
[15] 申斓, 周爱东, 吴小芹. 植物细胞培养生物反应器的种类特点及展望[J]. 中国生物工程杂志, 2015, 35(8): 109-115.