Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (10): 1-7    DOI: 10.13523/j.cb.20171001
研究报告     
人乳头瘤病毒16型L1基因在毕赤酵母中表达的影响因素分析
杨旭1,2,3,4, 黄惟巍1,2,3,4, 姚宇峰1,2,3,4, 刘存宝1,2,3,4, 孙文佳1,2,3,4, 白红妹1,2,3,4, 马雁冰1,2,3,4
1. 中国医学科学院 北京协和医学院 医学生物学研究所 昆明 650118;
2. 云南省重大传染病疫苗研发重点实验室 昆明 650118;
3. 云南省重大传染病疫苗工程技术研究中心 昆明 650118;
4. 云南省重大传染病疫苗研发国家地方联合工程研究中心 昆明 650118
Impact Factors on the Expression of Recombinant Human Papillomavirus 16 L1 Protein in Pichia pastoris
YANG Xu1,2,3,4, HUANG Wei-wei1,2,3,4, YAO Yu-feng1,2,3,4, LIU Cun-bao1,2,3,4, SUN Wen-jia1,2,3,4, BAI Hong-mei1,2,3,4, MA Yan-bing1,2,3,4
Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
 全文: PDF(898 KB)   HTML
摘要: 目的:优化人乳头瘤病毒16型主要衣壳蛋白L1(human papillomavirus type 16 major capsid protein L1,HPV16L1)在毕赤酵母中的表达,并考察可能的影响因素。方法:四个不同序列特征的HPV16L1基因M16、Y16、P16、W16(其中,M16和Y16按酵母密码子优化,P16为哺乳动物细胞密码子优化,而W16为野生型序列)分别克隆于毕赤酵母表达质粒pPinkTM-HC(高基因拷贝菌落筛选)和pPinkTM-LC(低基因拷贝菌落筛选),并转化不同蛋白酶缺陷的宿主菌。甲醇诱导24小时后,取菌体样品经Western blot分析L1蛋白的表达。结果:M16显示了最高的表达水平,其次是Y16与P16,而W16几乎无表达。基因序列密码子应用特征分析显示,4个基因的密码子适应指数从高到低依次为Y16、M16、W16和P16。通过自由能和GC含量分析4个序列的mRNA二级结构,Y16为-409.40 kcal/mol和43.85%;M16为-451.50 kcal/mol和47.83%;P 16为-606.50 kcal/mol and 64.10%;W16为-384.70 kcal/mol and 38.01%。蛋白酶缺陷菌株L1表达高于野生型菌株,质粒pPinkTM-HC与pPinkTM-LC介导的表达无明显区别。结论:密码子优化操作显著改善了HPV16L1在毕赤酵母中的表达,但表达水平与密码子利用优劣并不完全对应,提示密码子优化仅是部分原因,而mRNA结构与稳定性变化值得探讨。蛋白酶缺陷菌株提高了HPV16L1蛋白的稳定性,显著影响了表达水平。研究证明基因剂量对HPV16L1的表达未产生明显影响。
关键词: 重组毕赤酵母表达人乳头瘤病毒16主要衣壳蛋白L1    
Abstract: Optimization approaches have been shown in many published paper to be successful in improving the expression of a heterogenous gene in yeast cells, however, it is always needed to find out whether and how an approach works for the actual case. Multiple strategies were tried for the efficient expression of HPV16 L1 in Pichia pastoris, including the use of four gene versions with distinct sequence features (M16 and Y16 optimized for Pichia pastoris cells, P16 for mammalian cells, and W16 from a wild type sequence, respectively), and the employment of plasmid vectors facilitating selection of colonies with high or low gene copy numbers and host strains with different proteinase deficiency. M16 showed the highest expression, followed by Y16 and P16, whereas W16 was merely detectable. However, the codon adaptation order from high to low is sequentially Y16, M16, W16, and P16. The results indicate that the actually effective mechanism of codon optimization might not definitely attribute to codon adaptation. In addition, improving protein stability using specific proteinase-deficient host strains was also proved to be effective for L1 expression. In conclusion, the findings added useful information to our knowledge of optimizing expression of heterogeneous genes in Pichia pastoris cells.
Key words: Expression    Human papillomavirus type 16 major capsid protein L1 (HPV16 L1)    Pichia pastoris    Recombinant
收稿日期: 2017-06-14 出版日期: 2017-10-25
ZTFLH:  Q789  
基金资助: 云南省科技计划重点项目(2016FA049)、云南省应用基础研究面上项目(2010ZC232)、中央高校基本科研业务费(2012N08)资助项目
通讯作者: 马雁冰,may@imbcams.com.cn     E-mail: may@imbcams.com.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杨旭
刘存宝
白红妹
孙文佳
马雁冰
黄惟巍
姚宇峰

引用本文:

杨旭, 黄惟巍, 姚宇峰, 刘存宝, 孙文佳, 白红妹, 马雁冰. 人乳头瘤病毒16型L1基因在毕赤酵母中表达的影响因素分析[J]. 中国生物工程杂志, 2017, 37(10): 1-7.

YANG Xu, HUANG Wei-wei, YAO Yu-feng, LIU Cun-bao, SUN Wen-jia, BAI Hong-mei, MA Yan-bing. Impact Factors on the Expression of Recombinant Human Papillomavirus 16 L1 Protein in Pichia pastoris. China Biotechnology, 2017, 37(10): 1-7.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20171001        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I10/1

[1] Ahmad M, Hirz M, Pichler H, et al. Protein expression in Pichia pastoris:recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol, 2014, 98(12):5301-5317.
[2] Ciarkowska A, Jakubowska A. Pichia pastoris as an expression system for recombinant protein production. Postepy Biochem, 2013, 59(3):315-321.
[3] Damasceno L M, Huang C J, Batt C A.,et al. Protein secretion in Pichia pastoris and advances in protein production. Appl Microbiol Biotechnol, 2012, 93(1):31-39.
[4] Macauley-Patrick S, Fazenda M L, Mcneil B, et al. Heterologous protein production using the Pichia pastoris expression system. Yeast, 2005, 22(4):249-270.
[5] Lanza A M, Curran K A, Rey l G, et al. A condition-specific codon optimization approach for improved heterologous gene expression in Saccharomyces cerevisiae. BMC Syst Biol, 2014, 8:33.
[6] Norkiene M, Gedvilaite A. Influence of codon bias on heterologous production of human papillomavirus type 16 major structural protein L1 in yeast. Scientific World Journal, 2012, 2012:979218.
[7] Hanumantha R N, Baji B P, Rajendra L, et al. Expression of codon optimized major capsid protein (L1) of human papillomavirus type 16 and 18 in Pichia pastoris; purification and characterization of the virus-like particles. Vaccine, 2011, 29(43):7326-7334.
[8] Kim H J, Kwag H L. Codon optimization of the human papillomavirus type 58 L1 gene enhances the expression of soluble L1 protein in Saccharomyces cerevisiae. Biotechnol Lett, 2013, 35(3):413-421.
[9] Shen Q, Wu M, Wang H B, et al. The effect of gene copy number and co-expression of chaperone on production of albumin fusion proteins in Pichia pastoris. Appl Microbiol Biotechnol, 2012, 96(3):763-772.
[10] Curran K A, Leavitt J M, Karim A S, et al. Metabolic engineering of muconic acid production in Saccharomyces cerevisiae. Metab Eng, 2013, 15:55-66.
[11] Agashe D, Martinez-gomez N C, Drummond D A, et al. Good codons, bad transcript:large reductions in gene expression and fitness arising from synonymous mutations in a key enzyme. Mol Biol Evol, 2013, 30(3):549-560.
[12] Jansen R, Bussemaker H J, Gerstein M. Revisiting the codon adaptation index from a whole-genome perspective:analyzing the relationship between gene expression and codon occurrence in yeast using a variety of models. Nucleic Acids Res, 2003, 31(8):2242-2251.
[13] Kim H J, Lee S J. Optimizing the secondary structure of human papillomavirus type 16 L1 mRNA enhances L1 protein expression in Saccharomyces cerevisiae. J Biotechnol, 2010, 150(1):31-36.
[14] Bartoszewski R A, Jablonsky M, Bartoszewska S, et al. A synonymous single nucleotide polymorphism in DeltaF508 CFTR alters the secondary structure of the mRNA and the expression of the mutant protein. J Biol Chem, 2010, 285(37):28741-28748.
[15] Ilyinskii P O, Schmidt T, Lukashev D, et al. Importance of mRNA secondary structural elements for the expression of influenza virus genes. OMICS, 2009, 13(5):421-430.
[1] 贺立恒,张毅,张洁,任豫超,解红娥,唐锐敏,贾小云,武宗信. 基于转录组和WGCNA的甘薯花青素合成相关基因共表达网络的构建及核心基因的挖掘*[J]. 中国生物工程杂志, 2021, 41(9): 27-36.
[2] 乔圣泰,王曼琦,徐慧妮. 番茄SlTpx原核表达蛋白的体外功能分析*[J]. 中国生物工程杂志, 2021, 41(8): 25-32.
[3] 郭曼曼,田开仁,乔建军,李艳妮. 噬菌体重组酶系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(8): 90-102.
[4] 李冰,张传波,宋凯,卢文玉. 生物合成稀有人参皂苷的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 71-88.
[5] 黄蕾,万常青,刘美琴,赵敏,郑妍鹏,彭向雷,虞结梅,付远辉,何金生. 利用DNA Assembly方法构建重组腺病毒载体[J]. 中国生物工程杂志, 2021, 41(6): 23-26.
[6] 马巧妮,王萌,朱兴全. 重组酶介导扩增技术及其在病原微生物快速检测中的应用进展*[J]. 中国生物工程杂志, 2021, 41(6): 45-49.
[7] 王惠临,周凯强,朱红雨,王力景,杨仲璠,徐明波,曹荣月. 凝血因子VII及其重组表达新进展[J]. 中国生物工程杂志, 2021, 41(2/3): 129-137.
[8] 张磊,唐永凯,李红霞,李建林,徐逾鑫,李迎宾,俞菊华. 促进原核表达蛋白可溶性的研究进展 *[J]. 中国生物工程杂志, 2021, 41(2/3): 138-149.
[9] 陈中伟,郑璞,陈鹏程,吴丹. 耐热植酸酶突变体的筛选及性质研究 *[J]. 中国生物工程杂志, 2021, 41(2/3): 30-37.
[10] 刘美琴,高博,焦月盈,李玮,虞结梅,彭向雷,郑妍鹏,付远辉,何金生. 人呼吸道合胞病毒感染的A549细胞中长链非编码RNA表达谱研究[J]. 中国生物工程杂志, 2021, 41(2/3): 7-13.
[11] 杨茜,栾雨时. sly-miR399在番茄抗晚疫病中的初步探究*[J]. 中国生物工程杂志, 2021, 41(11): 23-31.
[12] 陈素芳,夏明印,曾丽艳,安晓琴,田敏芳,彭建. 抗菌肽Cec4a的重组表达和抗菌活性研究*[J]. 中国生物工程杂志, 2021, 41(10): 12-18.
[13] 朱潇静,王芮,张欣欣,靳家鑫,路闻龙,丁大顺,霍翠梅,李青梅,孙爱军,庄国庆. 利用细菌人工染色体技术构建整合F基因的重组MDV疫苗株*[J]. 中国生物工程杂志, 2021, 41(10): 33-41.
[14] 陈鑫洁,钱芷兰,刘启,赵清,张元兴,蔡孟浩. 毕赤酵母底盘芳香族氨基酸合成途径改造生产肉桂酸及对香豆酸*[J]. 中国生物工程杂志, 2021, 41(10): 52-61.
[15] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.