Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (3): 65-72    DOI: 10.13523/j.cb.20170309
技术与方法     
利用异源正调控基因acyB2构建埃莎霉素I高产菌株
戴剑漉1, 卢智黎1, 林灵1,2, 王以光1, 赫卫清1
1. 中国医学科学院/北京协和医学院 医药生物技术研究所 国家卫计委抗生素生物工程重点实验室 北京 100050;
2. 东北农业大学生命科学学院 哈尔滨 150030
Construction of the Isomycin I High-yield Strain by Introducing a Heterologous Positive Regulatory Gene acyB2
DAI Jian-lu1, LU Zhi-li1, LIN Ling1,2, WANG Yi-guang1, HE Wei-qing1
1. Key Lab of Antibiotic Biotechnology, National Health and Family Planning Commission, Institute of Medicinal Biotechnology Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China;
2. College of Life Science, Northeast Agricultural University, Harbin 150030, China
 全文: PDF(856 KB)   HTML
摘要:

必特螺旋霉素(bitespiramycin,BT)是以异戊酰螺旋霉素(简称为埃莎霉素)Ⅰ、Ⅱ和Ⅲ为主要成分的多组分抗生素。通过阻断3-O-酰基转移酶基因(sspA),获得了只产埃莎霉素Ⅰ的WSJ-2菌株,但其发酵产物中含有大量螺旋霉素,而埃莎霉素Ⅰ含量较低。为提高4″-异戊酰基转移酶基因(ist)在WSJ-2中的表达水平,从而提高埃莎霉素Ⅰ的产量,首先构建了含有ist基因和其正调控基因acyB2连锁片段的重组质粒pSET152-ia,然后将其导入到埃莎霉素Ⅰ产生菌WSJ-2中,通过具有阿普拉霉素(apramycin)抗性标记的链霉菌整合型载体pSET152整合到WSJ-2的染色体上,获得新的埃莎霉素Ⅰ产生菌WSJ-IA。在不同发酵时间定量检测ist的表达水平,WSJ-IA中ist的表达量要明显高于WSJ-2。WSJ-IA高产菌株的发酵单位从(280±20)μg/ml提高至(1160 ±108)μg/ml,较原始菌株WSJ-2提高了314%,而且在WSJ-IA发酵产物中埃莎霉素Ⅰ与螺旋霉素Ⅰ含量的比值是WSJ-2的2.4倍左右,说明在引入acyB2基因的同时提高了菌株的发酵单位和埃莎霉素Ⅰ的产量。

关键词: 4&Prime埃莎霉素Ⅰ-异戊酰基转移酶基因(ist)正调控基因acyB2    
Abstract:

Bitespiramycin (BT) is a multi-component antibiotic consisted mainly of 4″-isovalerylspiramycin (isomycin) I, II and III. An isomycin I producing strain WSJ-2 has been obtained by inactivation of the 3-O-acyltransferase gene (sspA) in WSJ-1 which was responsible for the acylation of spiramycin I to II and III.However, the fermentation products of WSJ-2 contained plenty of spiramycin, and a low percentage of isomycin I. In order to improve the production of isomycin I through increasing the expression of 4″-isovaleryltransferase gene (ist), a recombinant plasmid pSET152-ia, carrying ist gene with positive regulatory gene acyB2 in Streptomyces thermotolerans, was constructed and introduced into Streptomyces spiramyceticus WSJ-2 by protoplast transformation. The recombinant plasmid pSET152-ia was integrated into the chromosome of WSJ-2 via Escherichia coli-Streptomyces shuttle vector pSET152, A new isomycin I producing strain, Streptomyces spiramyceticus WSJ-IA, was generated. The expression of ist in different culture period was detected by real-time quantitative PCR, which indicated that the ist expression of WSJ-IA was higher distinctly than that in WSJ-IA. The fermentation titer of high-yield WSJ-IA strains was up to (1160±108)μg/ml, increased by 314% compared to the original strain whose fermentation titer was only (280±20)μg/ml and the content ratio of isomycin I to spiramycin I in WSJ-IA was about 2.4 times of that in WSJ-2. These results demonstrated that the introduction of acyB2 gene can increase both the fermentation titer and isomycin production.

Key words: Isomycin I    Positive regulatory gene acyB2    4″-isovaleryltransferase gene (ist)
收稿日期: 2016-12-19 出版日期: 2017-03-25
ZTFLH:  Q815  
基金资助:

国家自然科学基金(81172972),国家科技重大专项(2014ZX09201003-002)资助项目

通讯作者: 赫卫清     E-mail: heweiqing@imb.pumc.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

戴剑漉, 卢智黎, 林灵, 王以光, 赫卫清. 利用异源正调控基因acyB2构建埃莎霉素I高产菌株[J]. 中国生物工程杂志, 2017, 37(3): 65-72.

DAI Jian-lu, LU Zhi-li, LIN Ling, WANG Yi-guang, HE Wei-qing. Construction of the Isomycin I High-yield Strain by Introducing a Heterologous Positive Regulatory Gene acyB2. China Biotechnology, 2017, 37(3): 65-72.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20170309        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I3/65

[1] Shang G D, Dai J L, Wang Y G. Construction and physiological studies on a stable bioengineered strain of Shengjimycin. J Antibiot (Tokyo), 2001, 54(1):66-73.
[2] 孙丽文, 朱锦桃, 林赴田. 生技霉素药代动力学性能研究. 中国药理学通报, 2000, 16(6):694-698. Sun L W, Zhu J T, Lin F T. Pharmacokinetics of SJ-SPM. Chin Pharmacol Bull, 2000,16(6):694-698.
[3] Shi X G, Zhong D F, Sun L. Pharmacokinetics of a novel antibiotic bitespiramycin in rats. Asian J Drug Metabol Pharmacokin, 2003, 3(2):134-137.
[4] Shi X G, Sun Y M, Zhang Y F, et al. Tissue distribution of bitespiramycin and spiramycin in rats. Acta Pharmacol Sin, 2004,25(11):1396-1401.
[5] 武临专, 马春燕, 王以光,等. 螺旋霉素3-O-酰基转移酶基因的删除和主要产生螺旋霉素组分Ⅰ菌株的获得. 生物工程学报,2007, 23(4):612-617. Wu L Z, Ma C Y, Wang Y G. et al. Deletion of spiramycin 3-O-acyltransferase gene from Streptomyces spiramyceticus F21 resulting in the production of spiramycin I as major component. Chin J Biotech, 2007, 23(4):612-617.
[6] Ma C Y, Zhou H X, Li J Y, et al. Construction of 4″-isovalerylspiramycin-I-producing strain by in-frame partial deletion of 3-O-acyltransferase gene in Streptomyces spiramyceticus WSJ-1, the bitespiramycin producer. Curr Microbiol, 2011, 62(1):16-20.
[7] Li J Y, Ma C Y, Wang H Y, et al. On-line identification of 4″-isovalerylspiramycin I in the genetic engineered strain of S. spiramyceticus F21 by liquid chromatography with electrospray ionization tandem mass spectrometry, ultraviolet absorbance detection and nuclear magnetic resonance spectrometry. J Chromatogr A, 2010, 1217(8):1419-1424.
[8] Liu G, Chater K F, Chandra G, et al. Molecular regulation of antibiotic biosynthesis in Streptomyces. Microbiol Mol Biol Rev, 2013, 77(1):112-143.
[9] Sevcikova B, Kormanec J. Differential production of two antibiotics of Streptomyces coelicolor A3(2), actinorhodin and undecylprodigiosin, upon salt stress conditions. Arch Microbiol, 2004, 181(5):384-389.
[10] Anton N, Mendes M V, Martin J F, et al. Identification of PimR as a positive regulator of pimaricin biosynthesis in Streptomyces natalensis. J Bacteriol, 2004, 186(9):2567-2575.
[11] Zhang B, Yang D, Yan Y, et al. Overproduction of lactimidomycin by cross-overexpression of genes encoding Streptomyces antibiotic regulatory proteins. Appl Microbiol Biotechnol, 2016, 100(5):2267-2277.
[12] Epp J K, Huber M L, Turner J R, et al. Production of a hybrid macrolide antibiotic in Streptomyces ambofaciens and Streptomyces lividans by introduction of a cloned carbomycin biosynthetic gene from Streptomyces thermotolerans. Gene, 1989, 85(2):293-301.
[13] Arisawa A, Kawamura N, Takeda K, et al. Cloning and nucleotide sequences of two genes involved in the 4″-O-acylation of macrolide antibiotics from Streptomyces thermotolerans. Biosci Biotech Bioch, 1993, 57(12):2020-2025.
[14] Karray F, Darbon E, Oestreicher N, et al. Organization of the biosynthetic gene cluster for the macrolide antibiotic spiramycin in Streptomyces ambofaciens. Microbiol, 2007, 153(Pt12):4111-4122.
[15] Bate N, Butler A R, Gandecha A R, et al. Multiple regulatory genes in the tylosin biosynthetic cluster of Streptomyces fradiae. Chem Biol, 1999, 6(9):617-624.
[16] Karray F, Darbon E, Nguyen H C, et al. Regulation of the biosynthesis of the macrolide antibiotic spiramycin in Streptomyces ambofaciens. J Bacteriol, 2010, 192(21):5813-5821.
[17] Stratigopoulos G, Bate N, Cundliffe E. Positive control of tylosin biosynthesis:pivotal role of TylR. Mol Microbiol, 2004, 54(5):1326-1334.
[18] Kuhstoss S, Rao R N. Analysis of the integration function of the streptomycete bacteriophage φC31. J Mol Biol, 1991, 222(4):897-908.
[19] Kieser T, Bibb M J, Buttner M J, et al. Practical Streptomyces Genetics. Norwich:The John Innes Foundation, 2000:232-236.
[20] 戴剑漉, 李瑞芬, 武临专, 等. 新一代必特螺旋霉素基因工程菌的微波诱变. 中国抗生素杂志, 2009, 34(7):406-410. Dai J L, Li R F, Wu L Z. Improvement of new generation of bitespiramycin producing strain by microwave radiation. Chin J Antibiot, 2009, 34(7):406-410.
[21] Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning:A Laboratory Manual. 2nd ed, New York:Cold Spring Harbor Laboratory Press, 1989:20-25.
[22] 国家药典委员会.中华人民共和国药典.(2005年版二部).北京:化学工业出版社,2005. Chinese Pharmacopoeia Commission. Pharmacopoeia of the People's Republic of China. Volume 2, 2005. Beijing:Chemical Industry Press, 2005.
[23] 刘垂玗.微生物菌株的参数分析.微生物学报, 1980, 20(2):166-172. Liu C Y. The parametric analysis on microbial strains. Acta Microbiol Sin, 1980, 20(2):166-172.
[24] 于其伟. 一株产生螺旋霉素的链霉菌新种. 微生物学报, 1982, 22(1):13-16. Yu Q W. A new species of Streptomyces producing spiramycin. Acta Microbiol Sin, 1982,22(1):13-16.
[25] 杨永红, 赫卫清, 李瑞芬, 等. 利用强启动子PermE*提高4″-异戊酰基转移酶基因在变铅青链霉菌TK24中对螺旋霉素的4″-异戊酰化水平. 中国抗生素杂志, 2010, 35(11):826-830. Yang Y H, He W Q, Li R F, et al. Incorporation of PermE*, a strong promoter, at 5'-upstream of 4″-isovaleryltransferase gene improves the bioconversion of spiramycin to 4″-isovaleryspiramycin in Streptomyces lividans TK24. Chin J Antibiot, 2010, 35(11):826-830.
[26] 张家瑚, 钟晶晶, 戴剑漉, 等. 耐热链霉菌4″-O-异戊酰基转移酶基因在变铅青链霉菌TK24中的表达. 生物工程学报, 2014, 30(9):1390-1400. Zhang J H, Zhong J J, Dai J L, et al. Expression of 4″-O-isovaleryltransferase gene from Streptomyces thermotolerans in Streptomyces lividans TK24. Chin J Biotech, 2014, 30(9):1390-1400.
[27] 王以光,姜洋,赵小峰,等. 可利霉素生物合成基因簇:中国, CN201511028754.2016-04-20. Wang Y G, Jiang Y,Zhao X F, et al. Biosynthetic Gene Cluster of Carrimycin:Chinese, CN201511028754.2016-04-20.

[1] 翟君叶,成旭,孙泽敏,李春,吕波. 毛蕊花糖苷的生物合成研究进展[J]. 中国生物工程杂志, 2021, 41(5): 94-104.
[2] 周惠颖,周翠霞,张婷,王雪雨,张会图,冀颐之,路福平. 强化底物利用酶系表达,提升地衣芽孢杆菌生产碱性蛋白酶性能[J]. 中国生物工程杂志, 2021, 41(2/3): 53-62.
[3] 栗波,王泽建,梁剑光,刘爱军,李海东. 等离子体作用结合氧限制模型选育利福霉素SV高产菌株 *[J]. 中国生物工程杂志, 2021, 41(2/3): 38-44.
[4] 王优蓓,郭思妤,常碧博,叶蕊芳,花强. 螺旋链霉菌遗传操作系统-接合转移体系的建立[J]. 中国生物工程杂志, 2021, 41(2/3): 45-52.
[5] 朱亚鑫, 段艳婷, 高宇豪, 王籍阅, 张晓梅, 张晓娟, 徐国强, 史劲松, 许正宏. 不同D/L单体比γ-聚谷氨酸的合成与调控[J]. 中国生物工程杂志, 2021, 41(1): 1-11.
[6] 王震,李霞,元英进. 微生物异源合成咖啡酸及其酯类衍生物研究进展 *[J]. 中国生物工程杂志, 2020, 40(7): 91-99.
[7] 樊斌,陈欢,宋婉莹,陈光,王刚. 乳酸菌基因改造技术研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 84-92.
[8] 梅雨薇,杨子云,于樊,龙旭伟. 生物表面活性剂脂肽的发酵生产及抑菌应用研究进展*[J]. 中国生物工程杂志, 2020, 40(5): 105-116.
[9] 王泽建,栗波,王萍,张琴,杭海峰,梁剑光,庄英萍. 葡萄糖和麦芽糖碳源底物对粪产碱杆菌合成凝胶多糖的胞内代谢流影响*[J]. 中国生物工程杂志, 2020, 40(5): 30-39.
[10] 童梅,程永庆,刘金毅,徐晨. 促进大肠杆菌周质空间小分子抗体表达的菌种构建方法*[J]. 中国生物工程杂志, 2020, 40(5): 48-56.
[11] 秦旭颖,杨洪江. 噬菌体分离纯化技术研究进展*[J]. 中国生物工程杂志, 2020, 40(5): 78-83.
[12] 岑黔鸿,高彤,任怡,雷涵. 重组酿酒酵母表达幽门螺杆菌VacA蛋白及其免疫原性分析*[J]. 中国生物工程杂志, 2020, 40(5): 15-21.
[13] 王蒙,张全,高慧鹏,关浩,曹长海. 生物发酵法制备木糖醇的研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 144-153.
[14] 崔自红,季秀玲. 细菌-噬菌体对抗性共进化研究进展 *[J]. 中国生物工程杂志, 2020, 40(1-2): 140-145.
[15] 陈子晗,周海胜,尹新坚,吴坚平,杨立荣. Amphibacillus xylanus谷氨酸脱氢酶基因工程菌培养条件优化 *[J]. 中国生物工程杂志, 2019, 39(10): 58-66.