Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (2): 88-92    DOI: 10.13523/j.cb.20170213
综述     
干细胞治疗脊髓损伤研究进展
陈刚1,2, 吴骏2, 祝贺2, 于天飞1
1. 齐齐哈尔大学生命科学与农林学院 齐齐哈尔 161006;
2. 中国科学院动物研究所干细胞与生殖生物学国家重点实验室 北京 100101
Progress of Stem Cell Therapy in Spinal Cord Injury
CHEN Gang1,2, WU Jun2, ZHU He2, YU Tian-fei1
1. College of Life Science and Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China;
2. State Key Laboratory of Stem Cells and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
 全文: PDF(413 KB)   HTML
摘要:

脊髓损伤后的常规治疗手段是在有效时间内进行手术缓减外力压迫,防止脊髓神经进一步受损。细胞替代治疗理论上可治愈脊髓损伤,不同类型细胞可从各角度产生治疗作用,包括损伤后的脊髓轴突再生、神经元再建和轴突髓鞘化等,进而促进功能恢复。对近年来干细胞治疗脊髓损伤研究中的最新结果进行了概述,以期为干细胞治疗脊髓损伤的研究提供参考。

关键词: 细胞治疗脊髓损伤干细胞细胞移植    
Abstract:

The conventional treatment of spinal cord injury (SCI) is decompressive laminectomy within a given time after SCI to prevent the secondary damage. Theoretically, cell replacement therapy can cure SCI, different types of cells can exert therapeutic effects from various aspects including injured spinal cord axon regeneration, neuron reconstruction and remyelinization, and finally promote the functional recovery. The published literatures in recent years which focusing on stem cell therapy in spinal cord injury were reviewed.

Key words: Stem cell    Cell transplantation    Spinal cord injury    Cell therapy
收稿日期: 2016-07-05 出版日期: 2017-02-25
ZTFLH:  R394.2  
基金资助:

国家“973”计划资助项目(2015CB964800)

通讯作者: 于天飞     E-mail: yutianfei2001@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

陈刚, 吴骏, 祝贺, 于天飞. 干细胞治疗脊髓损伤研究进展[J]. 中国生物工程杂志, 2017, 37(2): 88-92.

CHEN Gang, WU Jun, ZHU He, YU Tian-fei. Progress of Stem Cell Therapy in Spinal Cord Injury. China Biotechnology, 2017, 37(2): 88-92.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20170213        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I2/88

[1] McDonald J W, Liu X Z, Qu Y, et al. Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat Med, 1999, 5(12):1410-1412.
[2] Salewski R P, Mitchell R A, Shen C, et al. Transplantation of neural stem cells clonally derived from embryonic stem cells promotes recovery after murine spinal cord injury. Stem Cells Dev, 2015, 24(1):36-50.
[3] Lu P, Woodruff G, Wang Y, et al. Long-distance axonal growth from human induced pluripotent stem cells after spinal cord injury. Neuron, 2014, 83(4):789-796.
[4] Iwai H, Shimada H, Nishimura S, et al. Allogeneic neural stem/progenitor cells derived from embryonic stem cells promote functional recovery after transplantation into injured spinal cord of nonhuman primates. Stem Cells Transl Med, 2015, 4(7):708-719.
[5] Nemati S N, Jabbari R, Hajinasrollah M, et al. Transplantation of adult monkey neural stem cells into a contusion spinal cord injury model in Rhesus macaque monkeys. Cell J, 2014, 16(2):117-130.
[6] Watanabe S, Uchida K, Nakajima H, et al. Early transplantation of mesenchymal stem cells after spinal cord injury relieves pain hypersensitivity through suppression of pain-related signaling cascades and reduced inflammatory cell recruitment. Stem Cells, 2015, 33(6):1902-1914.
[7] Ninomiya K, Iwatsuki K, Ohnishi Y, et al. Intranasal delivery of bone marrow stromal cells to spinal cord lesions. J Neurosurg Spine, 2015, 23(1):111-119.
[8] Jarocha D, Milczarek O, Wedrychowicz A, et al. Continuous improvement after multiple mesenchymal stem cell transplantations in a patient with complete spinal cord injury. Cell Transplant, 2015, 24(4):661-672.
[9] Nistor G I, Totoiu M O, Haque N, et al. Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation. Glia, 2005, 49(3):385-396.
[10] Kim J B, Lee H, Arauzo-Bravo M J, et al. Oct4-induced oligodendrocyte progenitor cells enhance functional recovery in spinal cord injury model. EMBO J, 2015, 34(23):2971-2983.
[11] Sharp J, Frame J, Siegenthaler M, et al. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants improve recovery after cervical spinal cord injury. Stem Cells, 2010, 28(1):152-163.
[12] Li Y, Gautam A, Yang J, et al. Differentiation of oligodendrocyte progenitor cells from human embryonic stem cells on vitronectin-derived synthetic peptide acrylate surface. Stem Cells Dev, 2013, 22(10):1497-1505.
[13] Chew D J, Zhu L, Delivopoulos E, et al. A microchannel neuroprosthesis for bladder control after spinal cord injury in rat. Sci Transl Med, 2013, 5(210):155.
[14] Walker C L, Wang X, Bullis C, et al. Biphasic bisperoxovanadium administration and Schwann cell transplantation for repair after cervical contusive spinal cord injury. Exp Neurol, 2015, 264:163-172.
[15] Deng L X, Walker C, Xu X M. Schwann cell transplantation and descending propriospinal regeneration after spinal cord injury. Brain Res, 2015, 1619:104-114.
[16] Zhang S Q, Wu M F, Piao Z, et al. Edaravone combined with Schwann cell transplantation may repair spinal cord injury in rats. Neural Regen Res, 2015, 10(2):230-236.
[17] Ghosh M, Tuesta L M, Puentes R, et al. Extensive cell migration, axon regeneration, and improved function with polysialic acid-modified Schwann cells after spinal cord injury. Glia, 2012, 60(6):979-992.
[18] Kanno H, Pressman Y, Moody A, et al. Combination of engineered Schwann cell grafts to secrete neurotrophin and chondroitinase promotes axonal regeneration and locomotion after spinal cord injury. J Neurosci, 2014, 34(5):1838-1855.
[19] Witheford M, Westendorf K, Roskams A J. Olfactory ensheathing cells promote corticospinal axonal outgrowth by a L1 CAM-dependent mechanism. Glia, 2013, 61(11):1873-1889.
[20] Lima C, Escada P, Pratas-Vital J, et al. Olfactory mucosal autografts and rehabilitation for chronic traumatic spinal cord injury. Neurorehabil Neural Repair, 2010, 24(1):10-22.
[21] Kadoya K, Lu P, Nguyen K, et al. Spinal cord reconstitution with homologous neural grafts enables robust corticospinal regeneration. Nat Med, 2016, 22(5):479-487.

[1] 钱昱,丁晓雨,刘志强,袁增强. 基因修饰人多能干细胞的高效单克隆建系方法[J]. 中国生物工程杂志, 2021, 41(8): 33-41.
[2] 李开秀,司维. 间充质干细胞来源的外泌体治疗炎症性肠病研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 66-73.
[3] 王宇轩,陈婷,张永亮. MiR-148生物学功能研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 74-80.
[4] 赵久梅,王哲,李学英. 调控软骨形成的信号通路及相关因子在骨髓间充质干细胞骨向分化中的作用*[J]. 中国生物工程杂志, 2021, 41(10): 62-72.
[5] 陈飞,王晓冰,徐增辉,钱其军. 干细胞改善糖尿病的分子机制及临床研究进展[J]. 中国生物工程杂志, 2020, 40(7): 59-69.
[6] 毛开云,赵若春,王跃,范月蕾,江洪波. 全球细胞治疗CMO/CDMO行业发展态势分析 *[J]. 中国生物工程杂志, 2020, 40(6): 106-112.
[7] 戴奇男,张景红. 肿瘤多药耐药与自噬、DNA修复和肿瘤干细胞相关的分子机制研究进展 *[J]. 中国生物工程杂志, 2020, 40(4): 69-77.
[8] 苑亚坤,刘广洋,刘拥军,谢亚芳,吴昊. 间充质干细胞基础研究与临床转化的中美比较[J]. 中国生物工程杂志, 2020, 40(4): 97-107.
[9] 杨丹,田海山,李校堃. 成纤维细胞生长因子5的研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 117-124.
[10] 李玉,张晓. 日本细胞治疗监管双轨制的经验及启示 *[J]. 中国生物工程杂志, 2020, 40(1-2): 174-179.
[11] 陈利军,屈晶晶,项春生. 间充质干细胞在2019新型冠状病毒肺炎(COVID-19)中的治疗潜能、临床研究与应用前景*[J]. 中国生物工程杂志, 2020, 40(11): 43-55.
[12] 邱丹丹,陆彩霞,代解杰. 诱导多能干细胞来源的肝细胞在HCV感染模型中的应用*[J]. 中国生物工程杂志, 2020, 40(11): 67-72.
[13] 朱永朝,陶金,任萌萌,熊燃,何亚琴,周瑜,卢震辉,杜勇,杨芝红. 自噬抑制肿瘤坏死因子α诱导人胎盘胎儿来源间充质干细胞发生凋亡 *[J]. 中国生物工程杂志, 2019, 39(9): 62-67.
[14] 李欣,赵中利,罗晓彤,曹阳,张立春,于永生,金海国. 诱导多能干细胞向雄性生殖细胞分化诱导物的研究进展 *[J]. 中国生物工程杂志, 2019, 39(4): 94-100.
[15] 区裕升,郑红俊,钟时,李懿. TAEST16001:TCR亲和力增强型特异性T细胞免疫治疗[J]. 中国生物工程杂志, 2019, 39(2): 49-61.