Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2016, Vol. 36 Issue (11): 39-47    DOI: 10.13523/j.cb.20161106
研究报告     
城市生活污水用于培养雨生红球藻的研究
张怀瑾1,2, 张晶晶1,2, 周进2, 晋慧1,2, 蔡中华2
1 清华大学生命科学学院 北京 100084;
2 清华大学深圳研究生院海洋科学与技术学部 深圳 518055
Cultivation of Haematococcus pluvialis on Urban Sewage
ZHANG Huai jin1,2, ZHANG Jing jing1,2, ZHOU Jin2, JIN Hui1,2, CAI Zhong hua2
1. School of Life Science, Tsinghua University. Beijing 100084, China;
2. Division of Ocean Science and Technology, Graduate School at Shenzhen, Tsinghua University. Shenzhen 518055, China
 全文: PDF(992 KB)   HTML
摘要:

虾青素是自然界广泛存在的一种橘红色类胡萝卜素,广泛应用于食品、药品和化妆品行业。在虾青素的制备中,雨生红球藻是生产虾青素的最有效来源,目前提高虾青素产量的方式主要为提高生物量和产物合成率。目前已有大量研究针对生物量的优化,但依然存在改善空间。为此,尝试用城市生活污水作为培养基对雨生红球藻进行培养。结果表明,生活污水能促进雨生红球藻的生长,其产量是现有BG11培养基的2倍;虾青素的合成时期显著提前(P<0.05),且体内重金属含量未明显富集,处在安全浓度范围。此外,养藻后的城市生活污水中氮、磷含量显著降低(P<0.05),高氮、磷富余的情形得到有效改善。证实利用污水培养雨生红球藻的双重效应,一方面有利于积累藻类生物量,另一方面有助于净化水质,在经济效益和生态效益上具有极好的发展潜力。

关键词: 虾青素城市生活污水生态效益雨生红球藻水质净化    
Abstract:

Astaxanthin, a red-orange carotenoid pigment, is a powerful biological antioxidant that occurs naturally in a wide variety of living organisms. As a valuable natural product, astaxanthin was widely used in food and cosmetics industry, and considerable potential applications in human health and clinical medicine. Among the acquire process of astaxanthin, Haematococcus pluvialis is the most effective biological source. There are two ways to increase the production of astaxanthin:increasing the biomass and improving the synthesis efficiency. Previously research works have obtained many positive results, there is still a long-way to achieve the highest cost performance ratio. Thus, the municipal wastewater as medium to culture the H. pluvialis is used. The results shows that swage can improve the growth of H. pluvialis greatly, and the biomass is over 2-fold than the control medium (BG11 medium). After detect the level of heavy metal content in the H. pluvialis cell, there was no significant heavy metal enrichment in the algal body. The hazardous metal concentrations in the safe range. In addition, the new develop method can accelerate the products synthetise, and made the synthetic period of astaxanthin advanced significantly (P<0.05). Besides, it is worth noting that the content of nitrogen and phosphorus in the sewage reduced significantly with the growth of algae (P<0.05), eutrophic wastewater has been efficiently improved. Tanken together, our experiment demonstrate the feasibility to culture H. pluvialis by sewage. It can bring double effects:accumulation algal biomass, and helpful to purify water quality. The excellent economic and ecological benefits in algae culturing industry can be gained.

Key words: Ecological benefits    Astaxanthin    Water purification    Municipal wastewater    Haematococcus pluvialis
收稿日期: 2016-05-05 出版日期: 2016-11-25
ZTFLH:  Q493.99  
基金资助:

深圳市科技创新委技术攻关项目(JSGG20140519113458237),基础研究项目(JCYJ20140417115840286)资助项目

通讯作者: 蔡中华,caizh@sz.tsinghua.edu.cn     E-mail: caizh@sz.tsinghua.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

张怀瑾, 张晶晶, 周进, 晋慧, 蔡中华. 城市生活污水用于培养雨生红球藻的研究[J]. 中国生物工程杂志, 2016, 36(11): 39-47.

ZHANG Huai jin, ZHANG Jing jing, ZHOU Jin, JIN Hui, CAI Zhong hua. Cultivation of Haematococcus pluvialis on Urban Sewage. China Biotechnology, 2016, 36(11): 39-47.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20161106        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I11/39

[1] Miki W. Biological functions and activities of animal carotenoids. Pure and Applied Chemistry, 1991,63(1):141-146.
[2] Sarada R, Vidhyavathi R, Usha D, et al. An efficient method for extraction of astaxanthin from green algahaematococcus pluvialis. Journal of Agricultural and Food Chemistry, 2006,54(20):7585-7588.
[3] Naguib Y. Antioxidant activities of astaxanthin and related carotenoids. Journal of Agricultural and Food Chemistry, 2000,48(4):1150-1154.
[4] Dominguez-Bocanegra A R, Legarreta I G, Jeronimo F M, et al. Influence of environmental and nutritional factors in the production of astaxanthin from Haematococcus pluvialis. Bioresource Technology, 2004,92(2):209-214.
[5] Teng C Y, Qin S, Liu J G, et al. Transient expression of lacZ in bombarded unicellular green alga Haematococcus pluvialis. Journal of Applied Phycology, 2002,14(6):497-500.
[6] Johnson E A, An G H. Astaxanthin from microbial sources. Critical Reviews in Biotechnology, 1991,11(4):297-326.
[7] Kaewpintong K, Shotipruk A, Powtongsook S, et al. Photoautotrophic high-density cultivation of vegetative cells of Haematococcus pluvialis in airlift bioreactor. Bioresource Technology, 2007,98(2):288-295.
[8] Juca Seabra L M, Campos Pedrosa L F. Astaxanthin:structural and functional aspects. Revista De Nutricao-Brazilian Journal of Nutrition, 2010,23(6):1041-1050.
[9] Harker M, Tsavalos A J, Young A J. Factors responsible for astaxanthin formation in the chlorophyte Haematococcus pluvialis. Bioresource Technology, 1996,55(3):207-214.
[10] Boussiba S. Carotenogenesis in the green alga Haematococcus pluvialis:cellular physiology and stress response. Physiologia Plantarum, 2000,108(2):111-117.
[11] Fabregas J, Dominguez A, Maseda A, et al. Interactions between irradiance and nutrient availability during astaxanthin accumulation and degradation in Haematococcus pluvialis. Applied Microbiology and Biotechnology, 2003,61(5-6):545-551.
[12] Orosa M, Franqueira D, Cid A, et al. Carotenoid accumulation in Haematococcus pluvialis in mixotrophic growth. Biotechnology Letters, 2001,23(5):373-378.
[13] Kobayashi M, Kakizono T, Nishio N, et al. Antioxidant role of astaxanthin in the green alga Haematococcus pluvialis. Applied Microbiology and Biotechnology, 1997,48(3):351-356.
[14] Kobayashi M, Sakamoto Y. Singlet oxygen quenching ability of astaxanthin esters from the green alga Haematococcus pluvialis. Biotechnology Letters, 1999,21(4):265-269.
[15] Donkin P. Ketocarotenoid biosynthesis by Haematococcus lacustris. Phytochemistry, 1976,15(5):711-715.
[16] Harker M, Tsavalos A J, Young A J. Autotrophic growth and carotenoid production of Haematococcus pluvialis in a 30 liter air-lift photobioreactor. Journal of Fermentation and Bioengineering, 1996,82(2):113-118.
[17] Gong X, Chen F. Optimization of culture medium for growth of Haematococcus pluvialis. Journal of Applied Phycology, 1997,9(5):437-444.
[18] Dominguez-Bocanegra A R, Ponce-Noyola T, Torres-Munoz J A. Astaxanthin production by Phaffia rhodozyma and Haematococcus pluvialis:a comparative study. Applied Microbiology and Biotechnology, 2007,75(4):783-791.
[19] Johnson E A, Schroeder W A. Microbial Carotenoids. Advances in Biochemical Engineering/Biotechnology. Berlin Heidelberg:Springer-Verlag, 1996:41-59.
[20] Macdermid J C, Vincent J I, Gan B S, et al. A blinded placebo-controlled randomized trial on the use of astaxanthin as an adjunct to splinting in the treatment of carpal tunnel syndrome.. Hand (New York N Y), 2012,7(1):1-9.
[21] Spiller G A, Dewell A. Safety of an astaxanthin-rich Haematococcus pluvialis algal extract:a randomized clinical trial.. Journal of medicinal food, 2003,6(1):51-56.
[22] Guerin M, Huntley M E, Olaizola M. Haematococcus astaxanthin:applications for human health and nutrition. Trends in Biotechnology, 2003,21(5):210-216.
[23] Aflalo C, Meshulam Y, Zarka A, et al. On the relative efficiency of two-vs. one-stage production of astaxanthin by the green alga Haematococcus pluvialis. Biotechnology and Bioengineering, 2007,98(1):300-305.
[24] 邱保胜, 刘其芳.雨生红球藻培养基的改良. 水生生物学报,1999,23(04):391-394. Qiu B S, Liu Q F. An improvement on the growth medium for Haematococcus pluvialis. Acta Hydrobiologica Sinica, 1999,23(4):391-394.
[25] 翟兴文, 蒋霞敏, 陆开形, 雨生红球藻的优化培养研究. 水利渔业2002,22(05):16-18.

[1] 陈军,郑华军,刘亚铭,赵国屏,秦松. 雨生红球藻低覆盖度基因组草图分析 *[J]. 中国生物工程杂志, 2018, 38(7): 21-28.
[2] 王丹, 郑洪立, 纪晓俊, 高振. 响应面法对小球藻Chlorella zofingiensis高产虾青素条件的优化[J]. 中国生物工程杂志, 2013, 33(7): 71-81.
[3] 郑裕国, 沈寅初. 微生物发酵生产虾青素[J]. 中国生物工程杂志, 2002, 22(2): 19-22.
[4] 王菊芳, 梁世中. 红发夫酵母(phaffia rhodozyma)生产虾青素进展[J]. 中国生物工程杂志, 2000, 20(5): 48-50.
[5] 施安辉, 萧海杰. 目前国内外虾青素研究的进展[J]. 中国生物工程杂志, 1999, 19(1): 29-31.