Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2016, Vol. 36 Issue (9): 54-58    DOI: 10.13523/j.cb.20160907
综述     
中枢神经系统疾病治疗性抗体药物应用进展
任华景, 刘晓志, 王志明, 高健
华北制药集团新药研究开发有限责任公司 抗体药物研制国家重点实验室 石家庄 050015
Progression of Central Nervous System Disease Therapeutic Antibody Drug Application
REN Hua-jing, LIU Xiao-zhi, WANG Zhi-ming, GAO Jian
State Key Laboratory of Antibody Research & Development, New Drug Research and Development Company Ltd., North China Pharmaceutical Corporation, Shijiazhuang 050015, China
 全文: PDF(428 KB)   HTML
摘要:

单克隆抗体药物是一种新兴的治疗药物,具有高选择性,被用于多种疾病的治疗,如肿瘤、免疫疾病等,也可以用于中枢神经系统疾病,如阿尔茨海默病、帕金森病、中风和脑肿瘤等。然而,因为血脑屏障低通透性,限制了抗体药物在中枢神经系统疾病治疗中的应用,在很多神经系统疾病临床试验中,抗体药物并没有取得预期效果。如今,人们利用血脑屏障上内源性转运蛋白介导,设计了可以通过血脑屏障的抗体药物。对通过血脑屏障治疗性抗体药物研发进展及其应用前景进行了综述。

关键词: 中枢神经系统疾病血脑屏障单克隆抗体药物    
Abstract:

Monoclonal antibody drugs is a new drug with high selectivity, was used for the treatment of various diseases, such as cancer, autoimmune diseases, can also be used for central nervous system diseases, such as Alzheimer's disease, Parkinson, stroke and brain tumors. However, because of the low permeability of the blood-brain barrier, limiting the application of antibody drugs in the treatment of central nervous system diseases, in many nervous system diseases clinical trials, antibody drugs did not achieve the desired results. Nowadays, people use the endogenous transporter in blood-brain barrier, designed new antibody drugs. The progression of central nervous system disease therapeutic antibody drug development, and the application prospects are reviewed.

Key words: Monoclonal antibody drugs    Central nervous system diseases    Blood brain barrier
收稿日期: 2016-02-29 出版日期: 2016-03-16
ZTFLH:  Q816  
基金资助:

“十五”国家科技重大专项资助项目(2014ZX09201041)

通讯作者: 王志明     E-mail: gaojian3993@aliyun.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
任华景
刘晓志
王志明
高健

引用本文:

任华景, 刘晓志, 王志明, 高健. 中枢神经系统疾病治疗性抗体药物应用进展[J]. 中国生物工程杂志, 2016, 36(9): 54-58.

REN Hua-jing, LIU Xiao-zhi, WANG Zhi-ming, GAO Jian. Progression of Central Nervous System Disease Therapeutic Antibody Drug Application. China Biotechnology, 2016, 36(9): 54-58.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20160907        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I9/54

[1] Chen Y, Liu L. Modern methods for delivery of drugs across the blood-brain barrier. Advanced Drug Delivery Reviews, 2012,64(7):640-665.
[2] Alyautdin R, Khalin I, Nafeeza M I,et al. Nanoscale drug delivery systems and the blood-brain barrier. International Journal of Nanomedicine, 2014,9:795-811.
[3] Tajes M, Ramos-Fernandez E, Weng-Jiang X,et al. The blood-brain barrier:structure, function and therapeutic approaches to cross it. Molecular Membrane Biology, 2014,31(5):152-167.
[4] Zhang F, Xu C L, Liu C M. Drug delivery strategies to enhance the permeability of the blood-brain barrier for treatment of glioma. Drug Design, Development and Therapy, 2015,2015(9):2089-2100.
[5] Wang X, Yu X, Vaughan W,et al. Novel drug-delivery approaches to the blood-brain barrier. Neuroscience Bulletin, 2015,31(2):257-264.
[6] Upadhyay R K. Drug delivery systems, CNS protection, and the blood brain barrier. BioMed Research International, 2014,2014:869269.
[7] Farkhani S M, Valizadeh A, Karami H,et al. Cell penetrating peptides:Efficient vectors for delivery of nanoparticles, nanocarriers, therapeutic and diagnostic molecules. Peptides, 2014,57(7):78-94.
[8] Bicker J, Alves G, Fortuna A,et al. Blood-brain Barrier Models and Their Relevance for a Successful Development of CNS Drug Delivery Systems:A Review. European Journal of Pharmaceutics and Biopharmaceutics:Official Journal of Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik eV, 2014,87(3):409-432.
[9] Blanchette M, Tremblay L, Lepage M,et al. Impact of Drug Size on Brain Tumor and Brain Parenchyma Delivery After a Blood-brain Barrier Disruption. Journal of Cerebral Blood Flow and Metabolism:Official Journal of the International Society of Cerebral Blood Flow and Metabolism, 2014,34(5):820-826.
[10] Aronica E, Gorter J A, Jansen G H,et al. Expression and cellular distribution of multidrug transporter proteins in two major causes of medically intractable epilepsy:focal cortical dysplasia and glioneuronal tumors. Neuroscience, 2003,118(2):417-429.
[11] Parrish K E, Sarkaria J N, Elmquist W F. Improving drug delivery to primary and metastatic brain tumors:strategies to overcome the blood-brain barrier. Clinical Pharmacology and Therapeutics, 2015,97(4):336-346.
[12] Azad T D, Pan J, Connolly I D,et al. Therapeutic strategies to improve drug delivery across the blood-brain barrier. Neurosurgical Focus, 2015,38(3):E9.
[13] Cooper I, Last D, Guez D,et al. Combined local blood-brain barrier opening and systemic methotrexate for the treatment of brain tumors. Journal of cerebral blood flow and metabolism:official journal of the International Society of Cerebral Blood Flow and Metabolism, 2015,35(6):967-976.
[14] Crawford L, Rosch J, Putnam D. Concepts, technologies, and practices for drug delivery past the blood-brain barrier to the central nervous system. Journal of Controlled Release:Official Journal of the Controlled Release Society, 2015,doi:10.1016/j.jconrel.2015,12.041.
[15] Pardridge W M. Targeted delivery of protein and gene medicines through the blood-brain barrier. Clinical Pharmacology and Therapeutics, 2015,97(4):347-361.
[16] Pardridge W M. Blood-brain barrier drug delivery of IgG fusion proteins with a transferrin receptor monoclonal antibody. Expert Opinion on Drug Delivery, 2015,12(2):207-222.
[17] Miyake M M, Bleier B S. The blood-brain barrier and nasal drug delivery to the central nervous system. American Journal of Rhinology & Allergy, 2015,29(2):124-127.

[1] 邓蕊,曾佳利,卢雪梅. 基于Musca domestica cecropin的抗肿瘤小分子衍生肽筛选及构效关系解析*[J]. 中国生物工程杂志, 2021, 41(11): 14-22.
[2] 郭芳,张良,冯旭东,李春. 植物源UDP-糖基转移酶及其分子改造*[J]. 中国生物工程杂志, 2021, 41(9): 78-91.
[3] 李佳欣,张正,刘赫,杨青,吕成志,杨君. 角蛋白载药纳米颗粒的制备及药物可控释放性能研究*[J]. 中国生物工程杂志, 2021, 41(8): 8-16.
[4] 乔圣泰,王曼琦,徐慧妮. 番茄SlTpx原核表达蛋白的体外功能分析*[J]. 中国生物工程杂志, 2021, 41(8): 25-32.
[5] 张恒,刘慧燕,潘琳,王红燕,李晓芳,王彤,方海田. 生物法合成γ-氨基丁酸的研究策略*[J]. 中国生物工程杂志, 2021, 41(8): 110-119.
[6] 张赛,王刚,刘仲明,李辉军,汪大明,钱纯亘. 新型冠状病毒胶体金抗原快速检测试剂的研制及性能评价*[J]. 中国生物工程杂志, 2021, 41(5): 27-34.
[7] 何若昱,林福玉,高向东,刘金毅. 信号肽在大肠杆菌分泌系统中的研究与应用进展[J]. 中国生物工程杂志, 2021, 41(5): 87-93.
[8] 王国强,于茵茵,曾华辉,王旭东,吴玉彬,尚立芝,李玉林,张怡青,张西西,张振强,王云龙. 基于MS2噬菌体病毒样颗粒的RT-PCR检测新型冠状病毒(SARS-CoV-2)质控品制备*[J]. 中国生物工程杂志, 2020, 40(12): 31-40.
[9] 薛瑞,姚林,王瑞,罗正山,徐虹,李莎. 重组贻贝足蛋白的研究进展与应用*[J]. 中国生物工程杂志, 2020, 40(11): 82-89.
[10] 蔺士新,刘东晨,雷云,熊盛,谢秋玲. TNF-α纳米抗体的筛选、表达及特异性检测 *[J]. 中国生物工程杂志, 2020, 40(7): 15-21.
[11] 位薇,常保根,王英,路福平,刘夫锋. Tau蛋白核心片段306~378的异源表达、纯化及聚集特性验证*[J]. 中国生物工程杂志, 2020, 40(5): 22-29.
[12] 胡益波,皮畅钰,张哲,向柏宇,夏立秋. 丝状真菌蛋白表达系统研究进展*[J]. 中国生物工程杂志, 2020, 40(5): 94-104.
[13] 李炳娟,刘金锭,廖谊芳,韩文英,刘珂,侯晨露,张磊. 老黄酶OYE家族的蛋白质工程的研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 163-169.
[14] 陈秋利,杨丽超,李辉,温莎,李刚,何敏. 人Nek2蛋白原核表达纯化及其多克隆抗体制备 *[J]. 中国生物工程杂志, 2020, 40(3): 31-37.
[15] 孙思,邱喻兰,颜菊荣,杨静,吴光英,王玲,胥文春. 重组质粒pcDNA3-dnaJ/蛋白DnaJ异源免疫诱导Th1和Th17细胞免疫应答抵抗肺炎链球菌感染 *[J]. 中国生物工程杂志, 2019, 39(12): 9-17.