Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2016, Vol. 36 Issue (9): 1-10    DOI: 10.13523/j.cb.20160901
研究报告     
应用蛋白质组学筛选宫颈癌患者尿液中的肿瘤标志物
安龙飞1, 金龙2, 孙凤亮4, 李凯3, 闫成智4, 秦钧3, 张普民3, 吴琛1, 陈欢3
1 河北大学生命科学学院 保定 071000;
2 陕西省人民医院肿瘤放射治疗科 西安 710068;
3 北京蛋白质组研究中心 北京 102200;
4 天津医科大学宝坻临床学院泌尿外科 天津 301800
The character of cervical cancer patients and healthy women in experiment group and validation group
AN Long-fei1, JIN Long2, SUN Feng-liang4, LI Kai3, YAN Cheng-zhi4, QIN Jun3, ZHANG Pu-min3, WU Chen1, CHEN Huan3
1 College of Life Sciences, Hebei University, Baoding 071002, China;
2 Department of Oncology Radiotherapy, Shanxi Province People's Hospital, Xi'an 710068, China;
3 Beijing Proteome Research Center, Beijing 102200, China;
4 Department of Urology Surgery, Baodi Clinical Hospital, Tianjin Medical University, Tianjin 301800, China
 全文: PDF(1542 KB)   HTML
摘要:

通过比较健康女性和宫颈癌患者的尿蛋白质组,发现并分析差异表达蛋白,从中筛选潜在的宫颈癌的标志物。研究对象由43名宫颈癌患者(CC)和47名健康女性(HW)组成。用超速离心法沉淀尿蛋白,再用一维凝胶电泳(SDS-PAGE)与液相色谱-质谱联用技术(LC-MS/MS)鉴定尿液中的蛋白质,蛋白质定量采用无标定量。比较患者尿蛋白质组、健康对照的尿蛋白质组和宫颈癌组织蛋白质组,有1910个蛋白质是患者和健康对照共有的尿蛋白,这其中有746个蛋白质也存在于宫颈癌组织蛋白质组。在这746个蛋白质中找到84个上调蛋白和82下调蛋白。通过生物信息学分析发现牛皮癣素(S100A7)和癌胚抗原相关细胞黏附分子8(CEACAM8)是宫颈癌尿液样本独有蛋白质。在验证组的70例样本中,双盲法测试S100A7、CEACAM8以及两者联合诊断宫颈癌的敏感性能达到73%、87%、93%。结果提示,宫颈癌患者的尿蛋白质组与健康女性的尿蛋白质组不同,并且S100A7和CEACAM8可以作为宫颈癌潜在的肿瘤标志物。

关键词: 尿蛋白质组宫颈癌生物标志物    
Abstract:

To explore the differential proteome pattern and screen biomarkers in urine samples from cervical cancer patients, urine samples from 43 patients suffering from cervical cancer (CC) and 47 healthy women (HW) were collected for further proteomic analysis. Urine proteins precipitated by ultracentrifugation were subjected to SDS-PAGE separation and LC-MS/MS (liquid chromatograph-mass spectrometer/mass spectrometer) analysis by using the label-free protein quantification assay. By comparing the urine proteomes between CC, HW and cervical cancer tissue groups,over 1910 proteins were mutually exclusive in CC and HW groups, while 746 proteins were found in all three groups. In the subset of 746 proteins, 84 up-regulated proteins and 82 down-regulated proteins in CC group when compared with the HW group. Further bioinformatics analysis showed that S100A7(S100 calcium binding protein A7) and CEACAM8(carcinoembryonic antigen-related cell adhesion molecule 8) were specific to CC. For further validation, LC-MS/MS was applied quantification on 70 samples. The combined analysis of S100A7 and CEACAM8 (S100A7+CEACAM8) can improve the sensitivity of cervical cancer diagnosis from 73% (S100A7) and 87% (CEACAM8) to 93%. The urine proteome of cervical cancer was different from urine proteome of healthy women be envied. S100A7 and CEACAM8 were potential biomarkers for cervical cancer.

Key words: Urine proteome    Crvical cancer    Biomarker
收稿日期: 2016-02-15 出版日期: 2016-09-25
ZTFLH:  Q816  
基金资助:

国家“973”计划(2013CB910302),北京蛋白质组研究中心-天津医科大学宝坻临床学院转化医学联合研究中心基金(TMRC214Z01)资助项目

通讯作者: 吴琛, 陈欢     E-mail: dawnwuchen@163.com;chenhuansym@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

安龙飞, 金龙, 孙凤亮, 李凯, 闫成智, 秦钧, 张普民, 吴琛, 陈欢. 应用蛋白质组学筛选宫颈癌患者尿液中的肿瘤标志物[J]. 中国生物工程杂志, 2016, 36(9): 1-10.

AN Long-fei, JIN Long, SUN Feng-liang, LI Kai, YAN Cheng-zhi, QIN Jun, ZHANG Pu-min, WU Chen, CHEN Huan. The character of cervical cancer patients and healthy women in experiment group and validation group. China Biotechnology, 2016, 36(9): 1-10.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20160901        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I9/1

[1] Manzo-Merino J,Contreras-Paredes A, Vázquez-Ulloa E,et al. The role of signaling pathways in cervical cancer and molecular therapeutic targets. Arch Med Res,2014,45(7):525-539.
[2] Dasari S, Wudayagiri R, Valluru L. Cervical cancer:Biomarkers for diagnosis and treatment.Clin Chim Acta,2015,445:7-4411.
[3] Crosbie E J, Einstein M H, Franceschi S,et al. Human papillomavirus and cervical cancer. Lancet,2013,382(9895):889-899.
[4] Muñoz N, Bosch F X, de Sanjosé S,et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med,2003,348(6):518-527.
[5] Narisawa-Saito M, Kiyono T. Basic mechanisms of high-risk human papillomavirus-induced carcinogenesis:roles of E6 and E7 proteins.Cancer Sci,2007,98(10):1505-1511.
[6] Miglierini P, Malhaire J P, Goasduff G,et al. Cervix cancer brachytherapy:High dose rate. Cancer Radiother, 2014,18(5-6):452-457.
[7] Pornthanakasem W, Shotelersuk K, Termrungruanglert W, et al. Human papillomavirus DNA in plasma of patients with cervical cancer. BMC Cancer, 2001,1:2.
[8] Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature, 2003, 422(6928):198-207.
[9] Bantscheff M, Kuster B. Quantitative mass spectrometry in proteomics. Anal Bioanal Chem, 2012, 404(4):937-938.
[10] 常乘,朱云平.基于质谱的定量蛋白质组学策略和方法研究进展.中国科学:生命科学,2015,45:425-438. Chang C, Zhu Y P. Strategies and algorithms for quantitative proteomics based on mass spectrometry. Scientia Sinica Vitae, 2015, 45:425-438.
[11] Srivastava S, Srivastava R G. Proteomics in the forefront of cancer biomarker discovery. J Proteome Res, 2005, 4(4):1098-1103.
[12] Marimuthu A, O'Meally R N, Chaerkady R, et al. A comprehensive map of the human urinary proteome. J Proteome Res, 2011, 10(6):2734-2743.
[13] Shao C, Wang Y, Gao Y H. Applications of urinary proteomics in biomarker discovery. Sci China Life Sci, 2011, 54:409-417.
[14] Huangda W, Sherman B T, Lempicki R A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc, 2009,4(1):44-57.
[15] Papachristou E K, Roumeliotis T I, Chrysagi A, et al. The shotgun proteomic study of the human thin prep cervical smear using iTRAQ mass-tagging and 2D LC-FT-Orbitrap-MS:the detection of the human papillomavirus at the protein level. J Proteome Res, 2013, 12:2078-2089.
[16] Salomon-Perzyńska M, Perzyński A, Rembielak-Stawecka B, et al. VEGF-targeted therapy for the treatment of cervical cancer-literature review. Ginekol Pol, 2014, 85(6):461-465.
[17] Gu Y, Wu S L, Meyer J L, et al. Proteomic analysis of high-grade dysplastic cervical cells obtained from ThinPrep slides using laser capture microdissection and mass spectrometry. J Proteome Res, 2007, 6(11):4256-4268.
[18] Boichenko A P, Govorukhina N, Klip H G, et al. A panel of regulated proteins in serum from patients with cervical intraepithelial neoplasia and cervical cancer. J Proteome Res, 2014,13(11):4995-5007.
[19] Guo X, Hao Y, Kamilijiang M, et al. Potential predictive plasma biomarkers for cervical cancer by 2D-DIGE proteomics and Ingenuity Pathway Analysis. Tumour Biol, 2015,36(3):1711-1720.
[20] Aobchey P, Niamsup H, Siriaree S, et al. Proteomic analysis of candidate prognostic uinary marker for cervical cancer. J Proteomics, 2013,6(11):245-251.
[21] Van Raemdonck G A, Tjalma W A, Coen E P, et al. Identification of protein biomarkers for cervical cancer using human cervicovaginal fluid. PLoS One, 2014,9(9):e106488.
[22] Tindle R W. Immune evasion in human papillomavirus-associated cervical cancer. Nat Rev Cancer, 2002,2(1):59-65.
[23] Multhaupt H A, Leitinger B, Gullberg D, et al. Extracellular matrix component signaling in cancer. Adv Drug Deliv, 2016,97:28-40.
[24] Hanahan D, Weinberg R A. Hallmarks of cancer:the next generation. Cell, 2011,144(5):646-674.
[25] Lam C S, Cheung A H, Wong S K, et al. Prognostic significance of CD26 in patients with colorectal cancer. PLoS One, 2014,9(5):e98582.
[26] Inamoto T, Yamada T, Ohnuma K, et al. Humanized anti-CD26 monoclonal antibody as a treatment for malignant mesothelioma tumors. Clin Cancer Res, 2007,13(14):4191-4200.
[27] Pang R, Law W L, Chu A C, et al. A subpopulation of CD26+ cancer stem cells with metastatic capacity in human colorectal cancer. Cell Stem Cell, 2010,6(6):603-615.
[28] Ghani F I, Yamazaki H, Iwata S, et al. Identification of cancer stem cell markers in human malignant mesothelioma cells. Biochem Biophys Res Commun, 2011,404(2):735-742.
[29] Havre P A, Abe M, Urasaki Y, et al. The role of CD26/dipeptidyl peptidase IV in cancer. Front Biosci, 2008,13:1634-1645.
[30] Bauvois B. A collagen-binding glycoprotein on the surface of mouse fibroblasts is identified as dipeptidyl peptidase IV. Biochem J, 1988,252(3):723-731.
[31] Gonzalez-Gronow M, Kaczowka S, Gawdi G, et al. Dipeptidyl peptidase IV (DPP IV/CD26) is a cell-surface plasminogen receptor. Front Biosci, 2008,13:1610-1618.
[32] Sedo A, Stremenová J, Bušek P, et al. Peptidyl peptidase-IV and related molecules:markers of malignancy. Expert Opin Med Diagn, 2008,2(6):677-689.
[33] Kacar A, Arikok A T, Kokenek Unal T D, et al. Stromal expression of CD34, α-smooth muscle actin and CD26/DPPIV in squamous cell carcinoma of the skin:a comparative immunohistochemical study. Pathol Oncol Res, 2012,18(1):25-31.
[34] Watson P H. Psoriasin (S100A7). The International Journal of Biochemistry & Cell Biology, 1998,30:567-571.
[35] Schäfer B W, Heizmann C W. The S100 family of EFhand calcium binding proteins:functions and pathology. Trends Biochem Sci, 1996,21(4):134-140.
[36] Donato R. S100:a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol, 2001,33(7):637-668.
[37] Zimmer D B, Cornwall E H, Landar A, et al. The S100 protein family:history, function, and expression. Brain Res Bull, 1995,37(4):417-429.
[38] Algermissen B, Sitzmann J, LeMotte P, et al. Differential expression of CRABP Ⅱ, psoriasin and cytokeratin 1 mRNA in human skin diseases. Arch Dermatol Res, 1996,288(8):426-430.
[39] Al-Haddad S, Zhang Z, Leygue E,et al. Psoriasin (S100A7) expression and invasive breast cancer. Am J Pathol, 1999, 155(6):2057-2066.
[40] Enerbäck C, Porter D A, Seth P, et al. Psoriasin expression in mammary epithelial cells in vitro and in vivo. Cancer Res, 2002,62(1):43-47.
[41] Moubayed N, Weichenthal M, Harder J, et al. Psoriasin (S100A7) is significantly up-regulated in human epithelial skin tumors. J Cancer Res Clin Oncol, 2007,133(4):253-261.
[42] Ostergaard M, Rasmussen H H, Nielsen H V, et al. Proteome profiling of bladder squamous cell carcinomas:identification of markers that define their degree of differentiation. Cancer Res, 1997,57(18):4111-4117.
[43] Moog-Lutz C, Bouillet P, Régnier C H, et al. Comparative expression of the psoriasin (S100A7) and S100C genes in breast carcinoma and co-localization to human chromosome 1q21-q22. Int J Cancer, 1995,63(2):297-303.
[44] Leygue E, Snell L, Hiller T, et al. Differential expression of psoriasin messenger RNA between in situ and invasive human breast carcinoma. Cancer Res, 1996,56(20):4606-4609.
[45] Dey K K, Sarkar S, Pal I, et al. Mechanistic attributes of S100A7(psoriasin) in resistance of anoikis resulting tumor progression in squamous cell carcinoma of the oral cavity. Cancer Cell Int, 2015,15:94.
[46] Krop I, März A, Carlsson H A, et al. Putative role for psoriasin in breast tumor progression. Cancer Res, 2005,65(24):11326-11334.
[47] Royse K E, Zhi D, Conner M G, et al. Differential gene expression landscape of co-existing cervical pre-cancer lesions using RNA-seq. Front Oncol, 2014,4:339.
[48] Hammarström S. The carcinoembryonic antigen (CEA) family:structures, suggested functions and expression in normal and malignant tissues. Semin Cancer Biol, 1999,9(2):67-81.
[49] Yoon J, Terada A, Kita H. CD66b regulates adhesion and activation of human eosinophils. J Immunol, 2007,179(12):8454-8462.
[50] Skubitz KM, Skubitz AP. Interdependency of CEACAM-1, -3, -6, and -8 induced human neutrophil adhesion to endothelial cells. J Transl Med, 2008, 6(1):78.
[51] Torsteinsdóttir I, Arvidson N G, Hällgren R, et al. Enhanced expression of integrins and CD66b on peripheral blood neutrophils and eosinophils in patients with rheumatoid arthritis, and the effect of glucocorticoids. Scand J Immunol, 1999,50(4):433-439.
[52] Zhao L, Xu S, Fjaertoft G, et al. An enzyme-linked immunosorbent assay for human carcinoembryonic antigen-related cell adhesion molecule 8, a biological marker of granulocyte activities in vivo. J Immunol Methods, 2004,293(1-2):207-214.
[53] Mawhorter S D, Stephany D A, Ottesen E A, et al. Identification of surface molecules associated with physiologic activation of eosinophils:application of whole-blood flow cytometry to eosinophils. J Immunol, 1996,156(12):4851-4858.
[54] Schmidt T, Zündorf J, Grüger T, et al. CD66b overexpression and homotypic aggregation of human peripheral blood neutrophils after activation by a gram-positive stimulus. J Leukoc Biol, 2012,91(5):791-802.
[55] Graham R A, Wang S, Catalano P J, et al. Postsurgical surveillance of colon cancer:preliminary cost analysis of physician examination, carcinoembryonic antigen testing, chest x-ray, and colonoscopy. Ann Surg, 1998,228(1):59-63.
[56] Grunnet M, Sorensen J B. Carcinoembryonic antigen (CEA) as tumor marker in lung cancer. Lung Cancer, 2012,76(2):138-143.
[57] Esteban J M, Felder B, Ahn C, et al. Prognostic relevance of carcinoembryonic antigen and estrogen receptor status in breast cancer patients. Cancer, 1994,74(5):1575-1583.
[58] Kim J, Kaye F J, Henslee J G, et al. Expression of carcinoembryonic antigen and related genes in lung and gastrointestinal cancers. Int J Cancer, 1992,52(5):718-725.

[1] 唐敏,万群,孙恃雷,胡静,孙子久,方玉婷,张彦. Hsa-miR-5195-3p对人宫颈癌细胞SiHa增殖、迁移与侵袭的影响 *[J]. 中国生物工程杂志, 2020, 40(4): 17-24.
[2] 冯雪娇,侯海龙,喻琼,王俊姝. 我国宫颈癌疫苗市场分析及对策研究*[J]. 中国生物工程杂志, 2020, 40(11): 96-101.
[3] 李爱芳, 谷月, 李雪茹, 孙晖, 查何, 谢佳卿, 赵佳丽, 周兰. 促宫颈癌细胞增殖、迁移及其可能机制研究[J]. 中国生物工程杂志, 2017, 37(2): 8-14.
[4] 辛婧, 徐银胜, 张芳, 盛望. MicroRNA-124对人宫颈癌的抑制作用及机制研究[J]. 中国生物工程杂志, 2015, 35(10): 13-19.
[5] 宋敬东,王健伟,韩金祥,洪涛. 人乳头瘤病毒疫苗的研究进展[J]. 中国生物工程杂志, 2007, 27(4): 104-109.
[6] 王小兵,李茉,刘毅,田海梅,刘朝阳,李艳芬,曹冬艳,粱智,程冬婉,邵长君,张伟. HPV16+治疗性无佐剂蛋白疫苗—HPV16Z- Hsp65-E6/E7的构建、表达及纯化工艺研究[J]. 中国生物工程杂志, 2006, 26(12): 40-44.