Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2016, Vol. 36 Issue (8): 89-98    DOI: 10.13523/j.cb.20160812
综述     
综述人工合成型抗菌肽及其药学应用研究进展
温赛, 刘怀然, 韩煦, 李天, 邢旋
北京工商大学食品学院 食品添加剂与配料北京高校工程研究中心 食品风味化学北京市重点实验室 北京 100048
Research Advances in the Design of Synthetic Antimicrobial Peptides with Enhanced Therapeutic Potentials
WEN Sai, LIU Huai-ran, HAN Xu, LI Tian, XING Xuan
School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Food Flavor Chemistry, Beijing 100048, China
 全文: PDF(610 KB)   HTML
摘要:

天然抗菌肽(antimicrobial peptides, AMPs)是一类小分子阳离子多肽,具备多种杀菌机制,呈现出高效、广谱的杀菌特性,在抑制耐药性细菌、制备新型抗菌素等方面具有重要的研究价值。以天然抗菌肽为蓝本,设计和开发的人工合成型抗菌肽可以有效克服天然抗菌肽对蛋白酶敏感、细胞毒性较大、生产成本高等缺陷,作为抗感染的潜在药物具有更广阔的应用前景。综述了目前主要的抗菌肽人工改造技术,包括化学修饰法、蛋白质工程技术、计算机分子模拟技术和从头设计最小化抗菌肽方法的研究进展,并对人工合成抗菌肽作为抗菌药物的应用现状进行了简介。

关键词: 人工改造合成抗菌肽抗感染    
Abstract:

Natural antimicrobial peptides (AMPs) are small cationic peptides with potent and broad-spectrum antimicrobial activities which have received great attention as a promising antibiotic candidates to overcome the global epidemic of antibiotics-resistant infections. Natural AMPs has provided a wealth of information on the structure-activity relationship accounting for antimicrobial activity to design novel synthetic AMPs with improved protease-resistance, reduced cost of production and less hemolysis and toxicity, which greatly promotes the potential of synthetic peptides as anti-infectious agent. Firstly the general strategies and technologies employed in the design and optimization of synthetic peptides, i.e., chemical modification, protein engineering, in silico design and screening, and minimalist de novo design were summarized. Finally, the synthetic AMPs in clinical trail with outstanding therapeutic potentials and future perspectives of improved AMPs for therapeutic applications were highlighted.

Key words: Synthetic antimicrobial peptide    Anti-infection    Molecular modification
收稿日期: 2016-05-25 出版日期: 2016-08-25
ZTFLH:  Q819  
基金资助:

国家自然科学基金青年科学基金资助项目(21406005)

通讯作者: 温赛     E-mail: wensai@btbu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

温赛, 刘怀然, 韩煦, 李天, 邢旋. 综述人工合成型抗菌肽及其药学应用研究进展[J]. 中国生物工程杂志, 2016, 36(8): 89-98.

WEN Sai, LIU Huai-ran, HAN Xu, LI Tian, XING Xuan. Research Advances in the Design of Synthetic Antimicrobial Peptides with Enhanced Therapeutic Potentials. China Biotechnology, 2016, 36(8): 89-98.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20160812        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I8/89

[1] Wiesner J, Vilcinskas A. Antimicrobial peptides-the ancient arm of the human immune system. Virulence, 2010, 1(5):440-446.
[2] Melo M N, Ferre R, Castanho M A. Antimicrobial peptides:linking partition, activity and high membrane-bound concentrations. Nat Rev Microbiol, 2009, 7(3):245-250.
[3] Hancock R E, Sahl H G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol, 2006, 24(12):1551-1557.
[4] Lee T H, Hall K N, Aguilar M I. Antimicrobial peptide structure and mechanism of action:a focus on the role of membrane structure. Curr Top Med Chem, 2016, 16(1):25-39.
[5] Malmsten M. Antimicrobial peptides. Upsala Journal of Medical Sciences, 2014, 119:199-204.
[6] Nguyen L T, Haney E F, Vogel H J. The expanding scope of antimicrobial peptide structures and their modes of action. Trends in Biotechnology, 2011, 29(9):464-472.
[7] Jenssen H, Hamill P, Hancock R E W. Peptide antimicrobial agents. Clinical Microbiology Reviews, 2006, 19(3):491-511.
[8] Seo M D, Won H S, Kim J H, et al. Antimicrobial peptides for therapeutic applications:a review. Molecules, 2012, 17(10):12276-12286.
[9] Lee I H, Cho Y, Lehrer R I. Effects of pH and salinity on the antimicrobial properties of clavanins. Infection and Immunity, 1997, 65(7):2898-2903.
[10] Reddy K V, Yedery R D, Aranha C. Antimicrobial peptides:premises and promises. Int J Antimicrob Agents, 2004, 24(6):536-547.
[11] Str mstedt A A, Pasupuleti M, Schmidtchen A, et al. Evaluation of strategies for improving proteolytic resistance of antimicrobial peptides by using variants of EFK17, an internal segment of LL-37. Antimicrobial Agents and Chemotherapy, 2009, 53(2):593-602.
[12] Svendson J, Stensen W, Brandsdal B O. Antimicrobial peptides with stability toward tryptic degradation. Biochemistry 2008, 47(12):3777-3788.
[13] Nguyen L T, Chau J K, Perry N A, et al. Serum stabilities of short tryptophan- and arginine-rich antimicrobial peptide analogs. PLoS ONE, 2010, 5(9):e12684.
[14] Morris C J, Beck K, Fox M A, et al. Pegylation of antimicrobial peptides maintains the active peptide conformation, model membrane interactions, and antimicrobial activity while improving lung tissue biocompatibility following airway delivery. Antimicrobial Agents and Chemotherapy, 2012, 56(6):3298-3308.
[15] Zhang G, Han B, Lin X, et al. Modification of antimicrobial peptide with low molar mass poly(ethylene glycol). Biochemistry, 2008, 144(6):781-788.
[16] Costa F, Carvalho I F, Montelaro R C, et al. Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces. Acta Biomaterialia, 2011, 7(4):1431-1440.
[17] Matthias G, Kamran N. Preparation of LL-37-grafted titanium surfaces with bactericidal activity. Bioconjugate Chemistry, 2006, 17(2):548-550.
[18] Dutta D, Kumar N, Willcox M. Antimicrobial activity of four cationic peptides immobilised to poly-hydroxyethylmethacrylate. Biofouling, 2016, 32(4):429-438.
[19] Humblot V, Yala J F, Thebault P, et al. The antibacterial activity of magainin I immobilized onto mixed thiols self-assembled monolayers. Biomaterials, 2009, 30(21):3503-3512.
[20] Glinel K, Jonas A M, Jouenne T, et al. Antibacterial and antifouling polymer brushes incorporating antimicrobial peptide. Bioconjug Chem, 2009, 20(1):71-77.
[21] Willcox M D, Hume E B, Aliwarga Y, et al. A novel cationic-peptide coating for the prevention of microbial colonization on contact lenses. J Appl Microbiol, 2008, 105(6):1817-1825.
[22] Chen R, Cole N, Willcox M D, et al. Synthesis, characterization and in vitro activity of a surface-attached antimicrobial cationic peptide. Biofouling, 2009, 25(6):517-524.
[23] Yazici H, O'Neill M B, Kacar T, et al. Engineered chimeric peptides as antimicrobial surface coating agents toward infection-free implants. ACS Appl Mater Interfaces, 2016, 8(8):5070-5081.
[24] Bagheri M, Beyermann M, Dathe M. Immobilization reduces the activity of surface-bound cationic antimicrobial peptides with no influence upon the activity spectrum. Antimicrob Agents Chemother, 2009, 53(3):1132-1141.
[25] Qi X, Poernomo G, Wang K, et al. Covalent immobilization of nisin on multi-walled carbon nanotubes:superior antimicrobial and anti-biofilm properties. Nanoscale, 2011, 3(4):1874-1880.
[26] Haynie S L, Crum G A, Doele B A. Antimicrobial activities of amphiphilic peptides covalently bonded to a water-insoluble resin. Antimicrobial Agents and Chemotherapy, 1995, 39(2):301-307.
[27] Cho W M, Joshi B P, Cho H, et al. Design and synthesis of novel antibacterial peptide-resin conjugates. Bioorg Med Chem Lett, 2007, 17(21):5772-5776.
[28] Easton D M, Nijnik A, Mayer M L, et al. Potential of immunomodulatory host defense peptides as novel anti-infectives. Trends Biotechnol, 2009, 27(10):582-590.
[29] Morrison G M, Rolfe M, Kilanowski F M, et al. Identification and characterization of a novel murine beta-defensin-related gene. Mamm Genome, 2002, 13(8):445-451.
[30] Schroeder B O, Wu Z, Nuding S, et al. Reduction of disulphide bonds unmasks potent antimicrobial activity of human beta-defensin 1. Nature, 2011, 469(7330):419-423.
[31] Lundy F T, Nelson J, Lockhart D, et al. Antimicrobial activity of truncated alpha-defensin (human neutrophil peptide (HNP)-1) analogues without disulphide bridges. Mol Immunol, 2008, 45(1):190-193.
[32] Zimmermann G R, Legault P, Selsted M E, et al. Solution structure of bovine neutrophil beta-defensin-12:the peptide fold of the beta-defensins is identical to that of the classical defensins. Biochemistry, 1995, 34(41):13663-13671.
[33] Park Y, Hahm K S. Novel short AMP:design and activity study. Protein Pept Lett, 2012, 19(6):652-656.
[34] Qu P, Gao W, Chen H, et al. The central hinge link truncation of the antimicrobial peptide fowlicidin-3 enhances its cell selectivity without antibacterial activity loss. Antimicrob Agents Chemother, 2016, 60(5):2798-2806.
[35] Zasloff M. Inducing endogenous antimicrobial peptides to battle infections. Proc Natl Acad Sci U S A, 2006, 103(24):8913-8914.
[36] Braunstein A, Papo N, Shai Y. In vitro activity and potency of an intravenously injected antimicrobial peptide and its DL amino acid analog in mice infected with bacteria. Antimicrob Agents Chemother, 2004, 48(8):3127-3129.
[37] Nan Y H, Bang J K, Jacob B, et al. Prokaryotic selectivity and LPS-neutralizing activity of short antimicrobial peptides designed from the human antimicrobial peptide LL-37. Peptides, 2012, 35(2):239-247.
[38] Molhoek E M, van Dijk A, Veldhuizen E J, et al. Improved proteolytic stability of chicken cathelicidin-2 derived peptides by D-amino acid substitutions and cyclization. Peptides, 2011, 32(5):875-880.
[39] Avitabile C, Capparelli R, Rigano M M, et al. Antimicrobial peptides from plants:stabilization of the gamma core of a tomato defensin by intramolecular disulfide bond. J Pept Sci, 2013, 19(4):240-245.
[40] Rozek A, Powers J P, Friedrich C L, et al. Structure-based design of an indolicidin peptide analogue with increased protease stability. Biochemistry, 2003, 42(48):14130-14138.
[41] Chan L Y, Zhang V M, Huang Y H, et al. Cyclization of the antimicrobial peptide gomesin with native chemical ligation:influences on stability and bioactivity. Chembiochem, 2013, 14(5):617-624.
[42] Unger T, Oren Z, Shai Y. The effect of cyclization of magainin 2 and melittin analogues on structure, function, and model membrane interactions:implication to their mode of action. Biochemistry, 2001, 40(21):6388-6397.
[43] Nguyen L T, Schibli D J, Vogel H J. Structural studies and model membrane interactions of two peptides derived from bovine lactoferricin. J Pept Sci, 2005, 11(7):379-389.
[44] Eckert R, He J, Yarbrough D K, et al. Targeted killing of Streptococcus mutans by a pheromone-guided "Smart" antimicrobial peptide. Antimicrobial Agents and Chemotherapy, 2006, 50(11):3651-3657.
[45] He J, Anderson M H, Shi W, et al. Design and activity of a ‘dual-targeted’ antimicrobial peptide. International Journal of Antimicrobial Agents, 2009, 33(6):532-537.
[46] An L L, Yang Y H, Ma X T, et al. LL-37 enhances adaptive antitumor immune response in a murine model when genetically fused with M-CSFR(J6-1) DNA vaccine. Leukemia Research, 2005, 29(5):535-543.
[47] Che Y Z, Li Y R, Zou H S, et al. A novel antimicrobial protein for plant protection consisting of a Xanthomonas oryzae harpin and active domains of cecropin A and melittin. Microb Biotechnol, 2011, 4(6):777-793.
[48] Frecer V, Ho B, Ding J L. De novo design of potent antimicrobial peptides. Antimicrob Agents Chemother, 2004, 48(9):3349-3357.
[49] Bhattacharjya S, Domadia P N, Bhunia A, et al. High-resolution solution structure of a designed peptide bound to lipopolysaccharide:transferred nuclear overhauser effects, micelle selectivity, and anti-endotoxic activity. Biochemistry, 2007, 46(20):5864-5874.
[50] Bhattacharjya S. De novo designed lipopolysaccharide binding peptides:structure based development of antiendotoxic and antimicrobial drugs. Curr Med Chem, 2010, 17(27):3080-3093.
[51] Zakeri B, Lu T K. Synthetic biology of antimicrobial discovery. ACS Synth Biol, 2013, 2(7):358-372.
[52] 刘黎. 抗菌肽活性的力学调控机制研究. 广州:华南理工大学, 2012. Liu L. The mechanical mechanism to regulate antimicrobial activity of antimicrobial peptides. Guangzhou:South China University of Technology, 2012.
[53] Cherkasov A, Hilpert K, Jenssen H, et al. Use of artificial intelligence in the design of small peptide antibiotics effective against a broad spectrum of highly antibiotic-resistant superbugs. ACS Chem Biol, 2009, 4(1):65-74.
[54] Fjell C D, Jenssen H, Hilpert K, et al. Identification of novel antibacterial peptides by chemoinformatics and machine learning. J Med Chem, 2009, 52(7):2006-2015.
[55] Fjell C D, Jenssen H, Cheung W A, et al. Optimization of antibacterial peptides by genetic algorithms and cheminformatics. Chem Biol Drug Des, 2011, 77(1):48-56.
[56] Strom M B, Haug B E, Skar M L, et al. The pharmacophore of short cationic antibacterial peptides. J Med Chem, 2003, 46(9):1567-1570.
[57] Liu Z, Brady A, Young A, et al. Length effects in antimicrobial peptides of the (RW)n series. Antimicrob Agents Chemother, 2007, 51(2):597-603.
[58] Deslouches B, Steckbeck J D, Craigo J K, et al. Rational design of engineered cationic antimicrobial peptides consisting exclusively of arginine and tryptophan, and their activity against multidrug-resistant pathogens. Antimicrob Agents Chemother, 2013, 57(6):2511-2521.
[59] Chan D I, Prenner E J, Vogel H J. Tryptophan- and arginine-rich antimicrobial peptides:structures and mechanisms of action. Biochim Biophys Acta, 2006, 9(202):21.
[60] Wiradharma N, Khoe U, Hauser C A, et al. Synthetic cationic amphiphilic alpha-helical peptides as antimicrobial agents. Biomaterials, 2011, 32(8):2204-2212.
[61] Wiradharma N, Khan M, Yong L K, et al. The effect of thiol functional group incorporation into cationic helical peptides on antimicrobial activities and spectra. Biomaterials, 2011, 32(34):9100-9108.
[62] Wiradharma N, Sng M Y, Khan M, et al. Rationally designed alpha-helical broad-spectrum antimicrobial peptides with idealized facial amphiphilicity. Macromol Rapid Commun, 2013, 34(1):74-80.
[63] Javadpour M M, Juban M M, Lo W C, et al. De novo antimicrobial peptides with low mammalian cell toxicity. J Med Chem, 1996, 39(16):3107-3113.
[64] Deslouches B, Phadke S M, Lazarevic V, et al. De novo generation of cationic antimicrobial peptides:influence of length and tryptophan substitution on antimicrobial activity. Antimicrob Agents Chemother, 2005, 49(1):316-322.
[65] Kang S J, Won H S, Choi W S, et al. De novo generation of antimicrobial LK peptides with a single tryptophan at the critical amphipathic interface. J Pept Sci, 2009, 15(9):583-588.
[66] Jiang Z, Vasil A I, Gera L, et al. Rational design of alpha-helical antimicrobial peptides to target Gram-negative pathogens, Acinetobacter baumannii and Pseudomonas aeruginosa:utilization of charge, ‘specificity determinants’, total hydrophobicity, hydrophobe type and location as design parameters to improve the therapeutic ratio. Chem Biol Drug Des, 2011, 77(4):225-240.
[67] Wu H, Ong Z Y, Liu S, et al. Synthetic β-sheet forming peptide amphiphiles for treatment of fungal keratitis. Biomaterials, 2015, 43:44-49.
[68] Ong Z Y, Gao S J, Yang Y Y. Short synthetic β-sheet forming peptide amphiphiles as broad spectrum antimicrobials with antibiofilm and endotoxin neutralizing capabilities. Advanced Functional Materials, 2013, 23(29):3682-3692.
[69] Ong Z Y, Cheng J, Huang Y, et al. Effect of stereochemistry, chain length and sequence pattern on antimicrobial properties of short synthetic beta-sheet forming peptide amphiphiles. Biomaterials, 2014, 35(4):1315-1325.
[70] Murugan R N, Jacob B, Kim E H, et al. Non hemolytic short peptidomimetics as a new class of potent and broad-spectrum antimicrobial agents. Bioorg Med Chem Lett, 2013, 23(16):4633-4636.
[71] Haisma E M, de Breij A, Chan H, et al. LL-37-derived peptides eradicate multidrug-resistant Staphylococcus aureus from thermally wounded human skin equivalents. Antimicrob Agents Chemother, 2014, 58(8):4411-4419.
[72] Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev, 2010, 74(3):417-433.
[73] Tan S, Gan C, Li R, et al. A novel chemosynthetic peptide with beta-sheet motif efficiently kills Klebsiella pneumoniae in a mouse model. Int J Nanomedicine, 2015, 10:1045-1059.
[74] Brouwer C P, Rahman M, Welling M M. Discovery and development of a synthetic peptide derived from lactoferrin for clinical use. Peptides, 2011, 32(9):1953-1963.
[75] Lupetti A, Paulusma-Annema A, Welling M M, et al. Synergistic activity of the N-terminal peptide of human lactoferrin and fluconazole against Candida species. Antimicrob Agents Chemother, 2003, 47(1):262-267.
[76] Rothstein D M, Spacciapoli P, Tran L T, et al. Anticandida activity is retained in P-113, a 12-amino-acid fragment of histatin 5. Antimicrob Agents Chemother, 2001, 45(5):1367-1373.
[77] Zhang L, Parente J, Harris S M, et al. Antimicrobial peptide therapeutics for cystic fibrosis. Antimicrob Agents Chemother, 2005, 49(7):2921-2927.
[78] Ge Y, MacDonald D L, Holroyd K J, et al. In vitro antibacterial properties of pexiganan, an analog of magainin. Antimicrob Agents Chemother, 1999, 43(4):782-788.
[79] Fritsche T R, Rhomberg P R, Sader H S, et al. Antimicrobial activity of omiganan pentahydrochloride against contemporary fungal pathogens responsible for catheter-associated infections. Antimicrob Agents Chemother, 2008, 52(3):1187-1189.
[80] Domingues M M, Santos N C, Castanho M A. Antimicrobial peptide rBPI21:a translational overview from bench to clinical studies. Curr Protein Pept Sci, 2012, 13(7):611-619.
[81] Dutta P, Das S. Mammalian antimicrobial peptides:promising therapeutic targets against infection and chronic inflammation. Curr Top Med Chem, 2016, 16(1):99-129.

[1] 林敏. 玉米生物育种基础研究与关键技术[J]. 中国生物工程杂志, 2021, 41(12): 1-3.
[2] 吴函蓉,王莹,黄英明,李冬雪,李治非,方子寒,范玲. 以基地平台为抓手,促进生物技术创新与转化[J]. 中国生物工程杂志, 2021, 41(12): 141-147.
[3] 尹泽超,王晓芳,龙艳,董振营,万向元. 玉米穗腐病抗性鉴定、遗传分析与分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 103-115.
[4] 冷燕,孙康泰,刘倩倩,蒲阿庆,李翔,万向元,魏珣. 全球基因编辑作物监管趋势研究[J]. 中国生物工程杂志, 2021, 41(12): 24-29.
[5] 何伟,祝蕾,刘欣泽,安学丽,万向元. 玉米遗传转化与商业化转基因玉米开发*[J]. 中国生物工程杂志, 2021, 41(12): 13-23.
[6] 杨梦冰,江易林,祝蕾,安学丽,万向元. CRISPR/Cas植物基因组编辑技术及其在玉米中的应用*[J]. 中国生物工程杂志, 2021, 41(12): 4-12.
[7] 殷芳冰,王成,龙艳,董振营,万向元. 玉米雌穗性状遗传分析与形成机制*[J]. 中国生物工程杂志, 2021, 41(12): 30-46.
[8] 秦文萱,刘鑫,龙艳,董振营,万向元. 玉米叶夹角形成的遗传基础与分子机制解析*[J]. 中国生物工程杂志, 2021, 41(12): 74-87.
[9] 王锐璞,董振营,高悦欣,龙艳,万向元. 玉米籽粒淀粉含量遗传基础与调控机制*[J]. 中国生物工程杂志, 2021, 41(12): 47-60.
[10] 马雅杰,高悦欣,李依萍,龙艳,董振营,万向元. 玉米株高和穗位高的遗传基础与分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 61-73.
[11] 王彦博,魏佳,龙艳,董振营,万向元. 玉米雄穗性状遗传结构与形成分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 88-102.
[12] 毛开云,李荣,李丹丹,赵若春,范月蕾,江洪波. 全球双特异性抗体药物研发格局分析*[J]. 中国生物工程杂志, 2021, 41(11): 110-118.
[13] 吴函蓉,王莹,杨力,葛瑶,范玲. 我国生物技术基地平台现状与发展建议[J]. 中国生物工程杂志, 2021, 41(11): 119-123.
[14] 刘天义,冯卉,SALSABEELYousuf,解领丽,苗向阳. lncRNA在动物脂肪沉积中的研究进展*[J]. 中国生物工程杂志, 2021, 41(11): 82-88.
[15] 薛志勇,代红生,张显元,孙艳颖,黄志伟. 表达透明颤菌血红蛋白基因对酿酒酵母生长及细胞内氧化状态的影响*[J]. 中国生物工程杂志, 2021, 41(11): 32-39.