Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2016, Vol. 36 Issue (8): 31-37    DOI: 10.13523/j.cb.20160805
研究报告     
盐胁迫条件下玉米萜类合成相关基因的表达分析
史利平1, 季静1, 王罡1, 金超1, 谢超1, 杜希龙2, 关春峰1, 张烈3, 李辰1
1. 天津大学环境科学与工程学院 天津 300072;
2. 天津大学化工学院 天津 300072;
3. 天津科润津丰种业有限责任公司 天津 300384
The Expression and Analysis of Terpene Synthesis Related Genes in Maize under the Condition of Salt Stress
SHI Li-ping1, JI Jing1, WANG Gang1, JIN Chao1, XIE Chao1, DU Xi-long2, GUAN Chung-feng1, ZHANG Lie3, LI Chen1
1. School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China;
2. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;
3. Company of Tianjin Kerun Jinfeng Seed Industry, Tianjin 300384, China
 全文: PDF(871 KB)   HTML
摘要:

萜类是植物生长发育中具有重要作用的次级代谢产物,某些萜类可被生物和非生物胁迫诱导产生。用200 mmol/L NaCl溶液处理商用玉米品种天塔五号(F1)及其父母本三叶期幼苗,qRT-PCR结果发现萜类合成途径中的萜烯合酶基因2(terpene synthase 2, TPS2)、萜烯合酶基因3(terpene synthase 3, TPS3)、牻牛儿基牻牛儿基焦磷酸合成酶基因4(geranylgeranyl diphosphate synthase 4, GGPS4)在三组材料中表达量随胁迫时间延长均先上调再下调,且F1表达量显著高于亲本。F1自交F2代耐盐性及基因表达情况分析表明,F2代中三个基因表达仍与耐盐性呈正相关。对盐胁迫条件下总类胡萝卜素及各成分含量、生物量、光合指标、叶绿素和脯氨酸含量进行测定,发现F1耐盐能力明显优于亲本,表明 TPS2、TPS3、GGPS4 基因高水平表达与F1发挥耐盐优势、抵御逆境胁迫有一定相关性。

关键词: 玉米基因表达萜烯合酶基因耐盐碱    
Abstract:

Terpenes are important secondary metabolites that play a vital role in plant growth and development, some of which can be induced in response to biotic and abiotic stresses. The Tianta 5(F1) and its parent lines were treated with 200 mmol/L NaCl when they were at three-leaf stage. The qRT-PCR results showed the expression level of terpene synthase 2(TPS2), terpene synthase 3(TPS3) and geranylgeranyl diphosphate synthase 4(GGPS4) genes were up-regulated then down-regulated of all lines under salt stress, and the expression level of F1 was much higher than its parent lines.The expression level of three genes was positively correlated with the salt resistance of F2.The content and composition of carotenoids, biomass, photosynthetic indicators, content of chlorophyll and free proline were detected. The results showed that the salt tolerance of F1 was significantly higher than the parent lines. In conclusion, the high expression of TPS2, TPS3 and GGPS4 has a certain correlation with the resistance of salt and other abiotic stress of F1.

Key words: Terpene synthase    Maize    Gene expression    Salt tolerance
收稿日期: 2016-02-25 出版日期: 2016-08-25
ZTFLH:  Q786  
通讯作者: 季静     E-mail: jijingtjdx@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

史利平, 季静, 王罡, 金超, 谢超, 杜希龙, 关春峰, 张烈, 李辰. 盐胁迫条件下玉米萜类合成相关基因的表达分析[J]. 中国生物工程杂志, 2016, 36(8): 31-37.

SHI Li-ping, JI Jing, WANG Gang, JIN Chao, XIE Chao, DU Xi-long, GUAN Chung-feng, ZHANG Lie, LI Chen. The Expression and Analysis of Terpene Synthesis Related Genes in Maize under the Condition of Salt Stress. China Biotechnology, 2016, 36(8): 31-37.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20160805        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I8/31

[1] Yamaguchi T, Blumwald E. Developing salt-tolerant crop plants:challenges and opportunities. Trends in Plant Science, 2005, 10(12):615-620.
[2] Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures:towards genetic engineering for stress tolerance. Planta, 2003, 218(1):1-14.
[3] Tholl D. Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Current Opinion in Plant Biology, 2006, 9(3):297-304.
[4] Bohlmann J, Meyer-Gauen G, Croteau R. Plant terpenoid synthases:molecular biology and phylogenetic analysis. Proceedings of the National Academy of Sciences, 1998, 95(8):4126-4133.
[5] Laskaris G, Bounkhay M, Theodoridis G, et al. Induction of geranylgeranyl diphosphate synthase activity and taxane accumulation in Taxus baccata cell cultures after elicitation by methyl jasmonate. Plant Science, 1999, 147(1):1-8.
[6] Chen F, Tholl D, Bohlmann J, et al. The family of terpene synthases in plants:a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. The Plant Journal, 2011, 66(1):212-229.
[7] Dudareva N, Martin D, Kish C M, et al. (E)-β-ocimene and myrcene synthase genes of floral scent biosynthesis in snapdragon:function and expression of three terpene synthase genes of a new terpene synthase subfamily. The Plant Cell, 2003, 15(5):1227-1241.
[8] Taniguchi S, Miyoshi S, Tamaoki D, et al. Isolation of jasmonate-induced sesquiterpene synthase of rice:product of which has an antifungal activity against Magnaporthe oryzae. Journal of Plant Physiology, 2014, 171(8):625-632.
[9] Kappers I F, Aharoni A, Van Herpen T W, et al. Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis. Science, 2005, 309(5743):2070-2072.
[10] Schnee C, K? llner T G, Held M, et al. The products of a single maize sesquiterpene synthaseform a volatile defense signal that attracts natural enemies of maize herbivores. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(4):1129-1134.
[11] Jenkins G I. Signal transduction in responses to UV-B radiation. Annual Review of Plant Biology, 2009, 60:407-431.
[12] Esnault M A, Legue F, Chenal C. Ionizing radiation:advances in plant response. Environmental and Experimental Botany, 2010, 68(3):231-237.
[13] Grote R, Mayrhofer S, Fischbach R J, et al. Process-based modelling of isoprenoid emissions from evergreen leaves of Quercus ilex (L.). Atmospheric Environment, 2006, 40:152-165.
[14] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25(4):402-408.
[15] Wintermans J, De Mots A. Spectrophotometric characteristics of chlorophylls a and b and their phenophytins in ethanol. Biochimica et Biophysica Acta (BBA)-Biophysics including Photosynthesis, 1965, 109(2):448-453.
[16] Bates L, Waldren R, Teare I. Rapid determination of free proline for water-stress studies. Plant and Soil, 1973, 39(1):205-207.
[17] Wu W,Ji J,Wang G.et al.Overexpression of AtchyB in Eustoma grandiflorum shinn enhances its tolerance to high light via zeaxanthin accumulation.Plant Molecular Biology Reporter,2012,30(6):1433-1444.
[18] Aro E M, McCaffery S, Anderson J M. Photoinhibition and D1 protein degradation in peas acclimated to different growth irradiances. Plant Physiology, 1993, 103(3):835-843.
[19] Ji J,Wang G,Wang J,et al.Functional analysis of multiple carotenogenic genes from Lycium barbarum and Gentiana lutea L for their effects on β-carotene production in transgenic tobacoo.Biotechnology Letters,2009,31(2):305-312.
[20] Lee G W, Lee S, Chung M S, et al. Rice terpene synthase 20(OsTPS20) plays an important role in producing terpene volatiles in response to abiotic stresses. Protoplasma, 2015, 252(4):997-1007.
[21] Rao S A, Mcneilly T. Genetic basis of variation for salt tolerance in maize (Zea mays L). Euphytica, 1999, 108(108):145-150.
[22] Owen S M, Pe?uelas J. Opportunistic emissions of volatile isoprenoids. Trends in Plant Science, 2005, 10(9):420-426.
[23] Zhao Q, Wang G, Ji J, et al. Over-expression of Arabidopsis thaliana β-carotene hydroxylase (chyB) gene enhances drought tolerance in transgenic tobacco. Journal of Plant Biochemistry and Biotechnology, 2014, 23(2):190-198.
[24] Sharkey T D, Yeh S. Isoprene emission from plants. Annual Review of Plant Biology, 2001, 52(1):407-436.
[25] Sharkey T D. Effects of moderate heat stress on photosynthesis:importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant Cell and Environment, 2005, 28(3):269-277.

[1] 梁晋刚,张旭冬,毕研哲,王颢潜,张秀杰. 转基因抗虫玉米发展现状与展望*[J]. 中国生物工程杂志, 2021, 41(6): 98-104.
[2] 尹泽超,王晓芳,龙艳,董振营,万向元. 玉米穗腐病抗性鉴定、遗传分析与分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 103-115.
[3] 何伟,祝蕾,刘欣泽,安学丽,万向元. 玉米遗传转化与商业化转基因玉米开发*[J]. 中国生物工程杂志, 2021, 41(12): 13-23.
[4] 杨梦冰,江易林,祝蕾,安学丽,万向元. CRISPR/Cas植物基因组编辑技术及其在玉米中的应用*[J]. 中国生物工程杂志, 2021, 41(12): 4-12.
[5] 秦文萱,刘鑫,龙艳,董振营,万向元. 玉米叶夹角形成的遗传基础与分子机制解析*[J]. 中国生物工程杂志, 2021, 41(12): 74-87.
[6] 王锐璞,董振营,高悦欣,龙艳,万向元. 玉米籽粒淀粉含量遗传基础与调控机制*[J]. 中国生物工程杂志, 2021, 41(12): 47-60.
[7] 马雅杰,高悦欣,李依萍,龙艳,董振营,万向元. 玉米株高和穗位高的遗传基础与分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 61-73.
[8] 梁爱玲,刘文婷,武攀,李倩,高健,张洁,刘卫东,贾士儒,郑迎迎. 来源于Exophiala aquamarina的新型玉米赤霉烯酮水解酶的性质及底物结合中心关键氨基酸的功能研究*[J]. 中国生物工程杂志, 2021, 41(10): 19-27.
[9] 雷海英,赵青松,白凤麟,宋慧芳,王志军. 利用CRISPR/Cas9鉴定玉米发育相关基因ZmCen*[J]. 中国生物工程杂志, 2020, 40(12): 49-57.
[10] 赵程程,孙长坡,常晓娇,伍松陵,林振泉. 大肠杆菌细胞裂解系统的构建及其在真菌毒素降解酶表达中的应用 *[J]. 中国生物工程杂志, 2019, 39(4): 69-77.
[11] 王友华,邹婉侬,柳小庆,王兆华,孙国庆. 全球转基因玉米专利信息分析与技术展望 *[J]. 中国生物工程杂志, 2019, 39(12): 83-94.
[12] 唐健雪,肖永乐,彭俊杰,赵世纪,万小平,高荣. 融合抗菌肽基因在重组毕赤酵母的表达及体外活性研究 *[J]. 中国生物工程杂志, 2018, 38(6): 9-16.
[13] 庄旻敏,贾晓会,施定基,朱嘉诚,冯思豫,何培民,贾睿. 转基因聚球藻7942中vp28基因表达效率及其光合特性分析[J]. 中国生物工程杂志, 2018, 38(4): 30-37.
[14] 姚立鹏,葛炜,胡英君,骆海燕,吴珊珊,林飞蕾,郭俊明. 环状RNA的结构和功能特性及其与胃癌发生的关系 *[J]. 中国生物工程杂志, 2018, 38(2): 82-88.
[15] 苏爱国,宋伟,王帅帅,赵久然. 玉米细胞质雄性不育及其育性恢复基因的研究进展[J]. 中国生物工程杂志, 2018, 38(1): 108-114.