Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2016, Vol. 36 Issue (6): 81-86    DOI: 10.13523/j.cb.20160611
技术与方法     
一种遗传转化方法在海洋红酵母(Rhodotorula mucilaginosa)中的应用
孙文怡1,2,4, 张素芳2, 林心萍3, 栾雨时1
1. 大连理工大学生命科学与技术学院 大连 116024;
2. 中国科学院大连化学物理研究所 大连 116023;
3. 大连工业大学食品学院 大连 116034;
4. 吉林师范大学生命科学学院 四平 136000
Application of a Transformation in Rhodotorula mucilaginosa Genetic Engineering
SUN Wen-yi1,2,4, ZHANG Su-fang2, LIN Xin-ping3, LUAN Yu-shi1
1. School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China;
2. Dalian Institute of Chemical Physics, CAS, Dalian 116023, China;
3. School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China;
4. School of Life Sciences, Jilin Normal University, Siping 136000, China
 全文: PDF(787 KB)   HTML
摘要:

海洋红酵母作为一种产油微生物富含油脂和类胡萝卜素,但由于没有合适的遗传操作方法,无法对细胞反应器进行理性改进,阻碍了它的进一步发展。首先利用农杆菌介导转化成功构建了海洋红酵母的遗传操作平台。参考完成基因注释的圆红冬孢酵母基因组信息,分离其甘油醛-3-磷酸脱氢酶启动子,以基于圆红冬孢酵母密码子优化的潮霉素作为筛选标记,构建载体转化至农杆菌AGL1中,利用农杆菌介导转化成功得到潮霉素抗性表型正确的转化子,通过表型验证,基因型验证以及Western blot在蛋白水平验证,鉴定了hyg基因的有效表达,证明了外源抗性基因成功导入海洋红酵母菌株中,实现了海洋红酵母新的转化方法的建立。

关键词: 海洋红酵母农杆菌介导转化潮霉素    
Abstract:

Rhodotorula mucilaginosa is an oleaginous ocean yeast that of great interest for both lipid and carotenoids production. However, rationally engineering of this cell factory is impeded due to the absence of efficient and reliable genetic tools. Agrobacterium-mediated transformation (ATMT) was successfully developed for R. mucilaginosa. First, the promoter of glyceraldehyde-3-phosphate dehydrogenase (GPD) was identified by referring to the completely annotated genome information of Rhodosporidium toruloides. Then, the codon optimized hygromycin (hyg) gene under GPD was used as both selection marker and functional gene through ATMT transformation in R. mucilaginosa, the integration was confirmed by phenotype, genotype and Western blot analysis in protein level. The results provided a practical method for functional integration and expression of hyg genes in R. mucilaginosa, which would facilitate the development of genetic tools.

Key words: Rhodotorula mucilaginosa    Hygromycin    Agrobacterium-mediated transformation
收稿日期: 2015-12-24 出版日期: 2016-03-16
ZTFLH:  Q789  
基金资助:

国家自然科学基金面上项目(31370128)资助项目

通讯作者: 孙文怡     E-mail: sunwenyi@dicp.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
孙文怡
张素芳
林心萍
栾雨时
周晓馥

引用本文:

孙文怡, 张素芳, 林心萍, 栾雨时. 一种遗传转化方法在海洋红酵母(Rhodotorula mucilaginosa)中的应用[J]. 中国生物工程杂志, 2016, 36(6): 81-86.

SUN Wen-yi, ZHANG Su-fang, LIN Xin-ping, LUAN Yu-shi. Application of a Transformation in Rhodotorula mucilaginosa Genetic Engineering. China Biotechnology, 2016, 36(6): 81-86.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20160611        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I6/81

[1] Raggi P, Lopez P, Diaz A, et al. Debaryomyces hansenii and Rhodotorula mucilaginosa comprised the yeast core gut microbiota of wild and reared carnivorous salmonids, croaker and yellowtail. Environ Microbiol, 2014, 16(9): 2791-2803.
[2] Li M, Liu G L, Chi Z, et al. Single cell oil production from hydrolysate of cassava starch by marine-derived yeast Rhodotorula mucilaginosa TJY15a. Biomass Bioenerg, 2010, 34(1): 101-107.
[3] Aksu Z, Eren A T. Carotenoids production by the yeast Rhodotorula mucilaginosa: Use of agricultural wastes as a carbon source. Process Biochem, 2005, 40(9): 2985-2991.
[4] 赵宗保. 加快微生物油脂研究为生物柴油产业提供廉价原料. 中国生物工程杂志, 2005, 25(2): 8-11. Zhao Z B. Toward cheaper microbial oil for biodiesel oil. China Biotechnology, 2005, 25(2): 8-11.
[5] 陶俊, 张上隆, 徐昌杰,等. 类胡萝卜素合成的相关基因及其基因工程. 生物工程学报, 2002, 18(3): 276-281. Tao J, Zhang S L, Xu C J, et al. Gene and gene engineering of carotenoid biosynthesis. Chinese Journal of Biotechnology, 2002, 18(3): 276-281.
[6] Steen E J, Kang Y S, Bokinsky G, et al. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature, 2010, 463 (7280): 559-562.
[7] 刘雅婷,刘宏娟,王艳萍. 常压室温等离子体诱变粘红酵母筛选高产油脂菌株及发酵条件优化. 中国油脂, 2015, 40(1): 83-87. Liu Y T, Liu H J, Wang Y P. Screening of high lipid production strain from Rhodotorula glutinis mutagenized by atmospheric and room temperature plasma and optimization of fermentation condition. China Oils and Fats, 2015, 40(1): 83-87.
[8] Karube I, Tamiya E, Matsuoka H. Transformation of Saccharomy cescerevisiae spheroplasts by high electric pulse. FEBS Lett, 1985, 182(1): 90-94.
[9] Hashimoto H, Morikawa H, Yamada Y, et al. A novel method for transformation of intact yeast-cells by electroinjection of plasmid DNA. Appl Microbiol Bio, 1985, 21(5): 336-339.
[10] Meyer V. Genetic engineering of filamentous fungi-progress, obstacles and future trends. Biotechnol Adv, 2008, 26(2): 177-185.
[11] Gietz R D, Woods R A. Genetic transformation of yeast. Biotechniques, 2001, 30(4): 816-818.
[12] Kuck U, Hoff B. New tools for the genetic manipulation of filamentous fungi. Appl Microbiol Biotechnol, 2010, 86(1): 51-62.
[13] Schiestl R H, Petes T D. Integration of DNA fragments by illegitimate recombination in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A, 1991, 88(17): 7585-7589.
[14] Deligios M, Fraumene C, Abbondio M, et al. Draft genome sequence of Rhodotorula mucilaginosa, an emergent opportunistic pathogen. Genome Announc, 2015, 3(2): e00201-15.
[15] Meyer V. Genetic engineering of filamentous fungi-progress, obstacles and future trends. Biotechnol Adv, 2008, 26(2): 177-185.
[16] Michielse C B, Hooykaas P J, van den Hondel C, et al. Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Current Genetics, 2005, 48(1): 1-17.
[17] Lin X P, Wang Y N, Zhang S F, et al. Functional integration of multiple genes into the genome of the oleaginous yeast Rhodosporidium toruloides. FEMS Yeast Res, 2014, 14(4): 547-555.
[18] Lazo G R, Stein P A, Ludwig R A. A DNA transformation-competent arabidopsis genomic library in Agrobacterium. Nat Biotechnol (NY), 1991, 9(10): 963-967.
[19] Ji L H, Jiang Z D, Liu Y B, et al. A simplified and efficient method for transformation and gene tagging of Ustilago maydis using frozen cells. Fungal Genet Biol, 2010, 47(4): 279-287.
[20] van den Ent, J Löwe. Rf cloning: A restriction-free method for inserting target genes into plasmids. J Biochem Bioph Meth, 2006, 67(1): 67-74.
[21] Liu Y B, Koh C M J, Sun L H, et al. Characterization of glyceraldehyde-3-phosphate dehydrogenase gene rtgpd1 and development of genetic transformation method by dominant selection in oleaginous yeast Rhodosporidium toruloides. Appl Microbiol Biotechnol, 2013, 97(2): 719-729.
[22] Bundock P, den Dulk-RasA, Beijersbergen A, et al. Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J, 1995, 14(13): 3206-3214.
[23] Lin X P, Yang F, Zhou Y J, et al. Highly-efficient colony PCR method for red yeasts and its application to identify mutations within two leucine auxotroph mutants. Yeast, 2012, 29(11): 467-474.
[24] Zhu Z W, Zhang S F, Liu H W, et al. A multi-omic map of the lipid-producing yeast Rhodosporidium toruloides. Nat Commun, 2012, 3:1112.
[25] Wang Y N, Lin X P, Zhang S F, et al. Cloning and evaluation of different constitutive promoters in the oleaginous yeast Rhodosporidium toruloides.Yeast, 2015, DOI: 10.1002/yea.3145.

[1] 孟晓琳,庞锡明,王洁. 农杆菌介导海洋草酸青霉转化体系及聚酮合酶Pks生物学功能*[J]. 中国生物工程杂志, 2020, 40(9): 11-17.
[2] 孙丹, 张敏, 解长睿, 郭晓威, 徐赫韩, 高红桃, 李晓薇, 孙天旭, 李海燕. PEG法介导蛹虫草遗传转化体系的建立[J]. 中国生物工程杂志, 2017, 37(4): 76-82.
[3] 康海岐 申国安. 水稻愈伤组织对不同培养基的适应性、潮霉素的敏感性及其在遗传转化中的利用[J]. 中国生物工程杂志, 2009, 29(10): 50-54.
[4] 周衍,张粱,王正祥,石贵阳. 扣囊复膜孢酵母b-葡萄糖苷酶基因在工业酿酒酵母中的表达[J]. 中国生物工程杂志, 2007, 27(2): 64-69.
[5] 贾赟, 张素芳, 陈溥言, 赵玉军. 传染性法氏囊病病毒VP2基因的真核表达载体的构建及表达[J]. 中国生物工程杂志, 2004, 24(8): 68-72.
[6] 黄大昉, S.Bhairi, R.C.Staples. 携带潮霉素抗性基因的质粒pDH25转化灰霉菌研究[J]. 中国生物工程杂志, 1990, 10(5): 24-27.