Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2016, Vol. 36 Issue (5): 112-117    DOI: 10.13523/j.cb.20160516
综述     
DNA模式识别受体研究进展
陈青1, 朱鸿飞2, 郭晓宇2
1. 北京农学院农业部都市农业(北方)重点实验室 北京 102206;
2. 中国农业科学院北京畜牧兽医研究所 北京 100193
Progress on DNA Innate Immune Recognition Receptors
CHEN Qing1, ZHU Hong-fei2, GUO Xiao-yu2
1. Key Laboratory of Urban Agriculture(North) of Ministry of Agriculture China, Beijing University of Agriculture, Beijing 102206, China;
2. Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
 全文: PDF  HTML
摘要:

固有免疫系统利用模式识别受体识别病原相关分子模式。近期研究发现,外源DNA能够被宿主细胞中多种DNA受体识别,激活多种信号通路,上调Ⅰ型干扰素和促炎性细胞因子的表达。基于DNA的免疫识别在激活宿主抗感染免疫过程中起重要作用,因此仅对现已报道的DNA受体进行概述,同时对DNA的免疫识别与自身免疫病之间的关系进行探讨。

关键词: 模式识别Ⅰ型干扰素固有免疫DNA受体促炎性细胞因子    
Abstract:

The innate immune system deploys pattern recognition receptor(PRR) to detect pathogen-associated molecular pattern(PAMP). Microbial DNA could be recognized by various host DNA sensors that are either membrane-bound or located in the cytosol, and stimulate the production of type I interferons and proinflammatory cytokines. DNA-stimulated innate immune activation plays an important role in antimicrobial response as well as certain autoimmune diseases. The recent progress in identification of novel DNA sensors in host cells, and the related signaling pathways that lead to the innate immune activation were summarized.

Key words: DNA sensor    Proinflammatory    Innate immunity    Pattern recognition    TypeⅠinterferons    cytokines
收稿日期: 2015-12-09 出版日期: 2016-02-15
ZTFLH:  Q789  
基金资助:

国家自然科学基金(31402232),北京农学院优秀青年教师培育计划(BNRC&YX201404)资助项目

通讯作者: 郭晓宇     E-mail: guoxiaoyucaas@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈青
朱鸿飞
郭晓宇

引用本文:

陈青, 朱鸿飞, 郭晓宇. DNA模式识别受体研究进展[J]. 中国生物工程杂志, 2016, 36(5): 112-117.

CHEN Qing, ZHU Hong-fei, GUO Xiao-yu. Progress on DNA Innate Immune Recognition Receptors. China Biotechnology, 2016, 36(5): 112-117.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20160516        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I5/112

[1] Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell, 2006, 124(4):783-801.
[2] Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell, 2010, 140(6):805-820.
[3] Hemmi H, Takeuchi O, Kawai T, et al. A Toll-like receptor recognizes bacterial DNA. Nature, 2000, 408(6813):740-745.
[4] Dempsey A, Bowie A G. Innate immune recognition of DNA: A recent history. Virology, 2015, 479-480:146-152.
[5] Paludan S R. Activation and regulation of DNA-driven immune responses. Microbiol Mol Biol Rev, 2015, 79(2):225-241.
[6] Yasuda K, Richez C, Uccellini M B, et al. Requirement for DNA CpG content in TLR9-dependent dendritic cell activation induced by DNA-containing immune complexes. J Immunol, 2009, 183(5):3109-3117.
[7] Kawasaki T, Kawai T. Toll-like receptor signaling pathways. Front Immunol, 2014, 5:461-468.
[8] Jensen S B, Paludan S R. Sensing the hybrid-a novel PAMP for TLR9. EMBO J, 2014, 33(6):529-530.
[9] Ohto U, Shibata T, Tanji H, et al. Structural basis of CpG and inhibitory DNA recognition by toll-like receptor 9. Nature, 2015, 520(7549):702-705.
[10] Takaoka A, Wang Z, Choi M K, et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature, 2007, 448(7152):501-505.
[11] Kaiser W J, Upton J W, Mocarski E S. Receptor-interacting protein homotypic interaction motif-dependent control of NF-kappa B activation via the DNA-dependent activator of IFN regulatory factors. J Immunol, 2008, 181(9):6427-6434.
[12] Wang Z, Choi M K, Ban T, et al. Regulation of innate immune responses by DAI (DLM-1/ZBP1) and other DNA-sensing molecules. Proc Natl Acad Sci USA, 2008, 105(14):5477-5482.
[13] Upton J W, Kaiser W J, Mocarski E S. DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. Cell Host Microbe, 2012, 11(3):290-297.
[14] Takaoka A, Taniguchi T. Cytosolic DNA recognition for triggering innate immune responses. Adv Drug Deliv Rev, 2008, 60(7):847-857.
[15] Rebsamen M, Heinz L X, Meylan E, et al. DAI/ZBP1 recruits RIP1 and RIP3 through RIP homotypic interaction motifs to activate NF-kappaB. EMBO Rep, 2009, 10(8):916-922.
[16] Burckstummer T, Baumann C, Bluml S, et al. An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat Immunol, 2009, 10(3):266-272.
[17] Fernandes-Alnemri T, Yu J W, Datta P, et al. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature, 2009, 458(7237):509-513.
[18] Hornung V, Ablasser A, Charrel-Dennis M, et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature, 2009, 458(7237):514-518.
[19] Rathinam V A, Jiang Z, Waggoner S N, et al. The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat Immunol, 2010, 11(5):395-402.
[20] Morrone S R, Matyszewski M, Yu X, et al. Assembly-driven activation of the AIM2 foreign-dsDNA sensor provides a polymerization template for downstream ASC. Nat Commun, 2015, 6:7827-7839.
[21] Schroder K, Tschopp J. The inflammasomes. Cell, 2010, 140(6):821-832.
[22] Unterholzner L, Keating S E, Baran M, et al. IFI16 is an innate immune sensor for intracellular DNA. Nat Immunol, 2010, 11(11):997-1004.
[23] Jakobsen M R, Paludan S R. IFI16: At the interphase between innate DNA sensing and genome regulation. Cytokine Growth Factor Rev, 2014, 25(6):649-655.
[24] Diner B A, Lum K K, Cristea I M. The emerging role of nuclear viral DNA sensors. J Biol Chem, 2015, 290(44):26412-26421.
[25] Cao X. New DNA-sensing pathway feeds RIG-I with RNA. Nat Immunol, 2009, 10(10):1049-1051.
[26] Chiu Y H, Macmillan J B, Chen Z J. RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell, 2009, 138(3):576-591.
[27] Fong K S, de Couet H G. Novel proteins interacting with the leucine-rich repeat domain of human flightless-I identified by the yeast two-hybrid system. Genomics, 1999, 58(2):146-157.
[28] Ariake K, Ohtsuka H, Motoi F, et al. GCF2/LRRFIP1 promotes colorectal cancer metastasis and liver invasion through integrin-dependent RhoA activation. Cancer Lett, 2012, 325(1):99-107.
[29] Rikiyama T, Curtis J, Oikawa M, et al. GCF2: expression and molecular analysis of repression. Biochim Biophys Acta, 2003, 1629(1-3):15-25.
[30] Douchi D, Ohtsuka H, Ariake K, et al. Silencing of LRRFIP1 reverses the epithelial-mesenchymal transition via inhibition of the Wnt/beta-catenin signaling pathway. Cancer Lett, 2015, 365(1):132-140.
[31] Yang P, An H, Liu X, et al. The cytosolic nucleic acid sensor LRRFIP1 mediates the production of type I interferon via a beta-catenin-dependent pathway. Nat Immunol, 2010, 11(6):487-494.
[32] Miyashita M, Oshiumi H, Matsumoto M, et al. DDX60, a DEXD/H box helicase, is a novel antiviral factor promoting RIG-I-like receptor-mediated signaling. Mol Cell Biol, 2011, 31(18):3802-3819.
[33] Kim T, Pazhoor S, Bao M, et al. Aspartate-glutamate-alanine-histidine box motif (DEAH)/RNA helicase A helicases sense microbial DNA in human plasmacytoid dendritic cells. Proc Natl Acad Sci USA, 2010, 107(34):15181-15186.
[34] Zhang Z, Yuan B, Bao M, et al. The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat Immunol, 2011, 12(10):959-965.
[35] Parvatiyar K, Zhang Z, Teles R M, et al. The helicase DDX41 recognizes the bacterial secondary messengers cyclic di-GMP and cyclic di-AMP to activate a type I interferon immune response. Nat Immunol, 2012, 13(12):1155-1161.
[36] Ferguson B J, Mansur D S, Peters N E, et al. DNA-PK is a DNA sensor for IRF-3-dependent innate immunity. Elife, 2012, 1:e00047-e00063.
[37] Zhang X, Brann T W, Zhou M, et al. Cutting edge: Ku70 is a novel cytosolic DNA sensor that induces type III rather than type I IFN. J Immunol, 2011, 186(8):4541-4545.
[38] Hopfner K P, Karcher A, Craig L, et al. Structural biochemistry and interaction architecture of the DNA double-strand break repair Mre11 nuclease and Rad50-ATPase. Cell, 2001, 105(4):473-485.
[39] Deng Y, Guo X, Ferguson D O, et al. Multiple roles for MRE11 at uncapped telomeres. Nature, 2009, 460(7257):914-918.
[40] Kondo T, Kobayashi J, Saitoh T, et al. DNA damage sensor MRE11 recognizes cytosolic double-stranded DNA and induces type I interferon by regulating STING trafficking. Proc Natl Acad Sci U S A, 2013, 110(8):2969-2974.
[41] Roth S, Rottach A, Lotz-Havla A S, et al. Rad50-CARD9 interactions link cytosolic DNA sensing to IL-1beta production. Nat Immunol, 2014, 15(6):538-545.
[42] Civril F, Deimling T, de Oliveira Mann C C, et al. Structural mechanism of cytosolic DNA sensing by cGAS. Nature, 2013, 498(7454):332-337.
[43] Zhang X, Wu J, Du F, et al. The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop. Cell Rep, 2014, 6(3):421-430.
[44] Chin K H, Tu Z L, Su Y C, et al. Novel c-di-GMP recognition modes of the mouse innate immune adaptor protein STING. Acta Crystallogr D Biol Crystallogr, 2013, 69(Pt 3):352-366.
[45] Shang G, Zhu D, Li N, et al. Crystal structures of STING protein reveal basis for recognition of cyclic di-GMP. Nat Struct Mol Biol, 2012, 19(7):725-727.
[46] Ishikawa H, Ma Z, Barber G N. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature, 2009, 461(7265):788-792.
[47] Ishikawa H, Barber G N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature, 2008, 455(7213):674-678.
[48] 陈艳玫,姚鑫. 转录因子Sox2的研究进展. 生命科学, 2004, 16(3):129-134. Chen Y M, Yao Z. Advances in the studies of transcription factor Sox2. Chin Bull Life Sci, 2004, 16(3):129-134.
[49] Xia P, Wang S, Ye B, et al. Sox2 functions as a sequence-specific DNA sensor in neutrophils to initiate innate immunity against microbial infection. Nat Immunol, 2015, 16(4):366-375.
[50] Yu Z, Chen T, Cao X. Neutrophil sensing of cytoplasmic, pathogenic DNA in a cGAS-STING-independent manner. Cell Mol Immunol.[2015-04-27].http://www.nature.com/cmi/journal/vaop/ncurrent/full/cmi201534a.htm.
[51] Wu J, Chen Z J. Innate immune sensing and signaling of cytosolic nucleic acids. Annu Rev Immunol, 2014, 32:461-488.
[52] Ran Y, Shu H B, Wang Y Y. MITA/STING: a central and multifaceted mediator in innate immune response. Cytokine Growth Factor Rev, 2014, 25(6):631-639.

[1] 何小兵, 贾怀杰, 景志忠. Toll样受体对病原真菌的天然免疫识别[J]. 中国生物工程杂志, 2012, 32(12): 86-92.
[2] 孙英军, 张艳, 吴琼, 郑海学, 张志东. 固有免疫学的研究进展及其对研制新型免疫佐剂的启示[J]. 中国生物工程杂志, 2011, 31(03): 87-90.