Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2016, Vol. 36 Issue (5): 89-96    DOI: 10.13523/j.cb.20160513
技术与方法     
VD3羟化酶及其电子传递链的体外构建及活性研究
柯霞, 丁冠军, 孙骏, 王露, 郑裕国
浙江省生物有机合成技术研究重点实验室 浙江工业大学生物工程学院 杭州 310014
Vitamin D3 Hydroxylase and Its Electronic Transfer Chain in vitro Construction and Activity Analysis
KE Xia, DING Guan-jun, SUN Jun, Wang Lu, ZHENG Yu-guo
Key Laboratory of Bioorgainc Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
 全文: PDF(2460 KB)   HTML
摘要:

活性维生素D3具有广泛生理活性及药用价值,利用分子操作技术,在大肠杆菌细胞中重组表达VD3羟化过程的关键酶体系,是实现活性维生素D3生物法合成的有效手段。构建了来源于自养无枝酸菌(Pseudonocardia autotrophica)VD3羟化酶(Vdh, EC 1.14.13.159)及来源于不动杆菌(Acinetobacter sp. OC4)的铁氧还蛋白Fdx及铁氧还蛋白还原酶FdR的重组表达载体pET28b-Vdh、pET28b-FdR-Fdx,以大肠杆菌为宿主细胞,体外诱导表达并通过镍柱纯化三种蛋白质,通过CO差光谱法评价羟化酶Vdh体外活性,并利用2,6-二氯靛酚钠(DCIP)和细胞色素c作为电子受体评价电子传递链FdR-Fdx对NADH和NADPH的氧化活性及与羟化酶Vdh的偶联作用,最后利用Vdh及其电子传递链催化维生素D3的选择性羟化合成25(OH)VD3

关键词: 电子传递链维生素D3羟化酶生物催化    
Abstract:

Active vitamin D3 has a wide range of physiological activity and phamaceutical value. Construction of key enzyme system for the selective hydroxylation of VD3 in Escherichia coli cell is an effective mean to realize the biological conformation of active vitamin D3 through molecular manipulation. The recombinant expression vector pET28b-FdR-Fdx and pET28b-Vdh were constructed, VD3 hydroxylase (Vdh, EC 1.14.13.159) originated from Pseudonocardia, ferredoxin and ferredoxin reductase originated from Acinetobacter sp. OC4 were actively expressed in Escherichia coli as the host cell and purified by nickel column. Reduced CO difference spectra assay was carried out to evaluate the activity of VD3 hydroxylase in vitro. 2, 6-dichlorobenzenone-indophenol sodium salt and cytochrome c, serving as an electron acceptor, were used to evaluate both the oxidation activity of the electron transfer chain for NADH/NADPH and the coupling effect with the hydroxylase Vdh. Finally, 25(OH)VD3 is selectively hydroxylated by Vdh and its electron transport chain using vitamin D3 as the substrate.

Key words: Vitamin D3 hydroxylase    Biocatalysis    Electron transfer chain
收稿日期: 2015-12-28 出版日期: 2016-01-26
ZTFLH:  Q554+.1  
基金资助:

国家自然科学基金(31400978),浙江省教育厅科研项目(Y201329109)资助项目

通讯作者: 郑裕国     E-mail: zhengyg@zjut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
柯霞
丁冠军
孙骏
王露
郑裕国

引用本文:

柯霞, 丁冠军, 孙骏, 王露, 郑裕国. VD3羟化酶及其电子传递链的体外构建及活性研究[J]. 中国生物工程杂志, 2016, 36(5): 89-96.

KE Xia, DING Guan-jun, SUN Jun, Wang Lu, ZHENG Yu-guo. Vitamin D3 Hydroxylase and Its Electronic Transfer Chain in vitro Construction and Activity Analysis. China Biotechnology, 2016, 36(5): 89-96.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20160513        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I5/89

[1] Kang D J, Lee H S, Park J T, et al.Optimization of culture conditions for the bioconversion of vitamin D3 to 1α,25-dihydroxyvitamin D3 using Pseudonocardia autotrophica ID 9302.Biotechnology & Bioprocess Engineering,2006,11(5):408- 413.
[2] Noboru K.A new look at the most successful prodrugs for active vitamin D (D Hormone): alfacalcidol and doxercalciferol.Molecules,2009,14(10):3869-3880.
[3] Kubodera N.Pharmaceutical studies on vitamin D derivatives and practical syntheses of six commercially available vitamin D derivatives that contribute to current clinical practice.Heterocycles,2010,80(1):83-98.
[4] Kametani T, Furuyama H.Synthesis of vitamin D3 and related compounds. Medicinal Research Reviews,1987,7(2):147-171.
[5] El Sheikh S, Greffen A M Z, Lex J, et al. Synthesis of the core structure of the cyclocitrinols via SmI(2)-mediated fragmentation of a cyclopropane precursor. Syn Lett, 2007,12:1881-1884.
[6] Sawada N, Sakaki T, Yoneda S, et al.Conversion of vitamin D3 to 1alpha, 25-dihydroxyvitamin D3 by Streptomyces griseolus cytochrome P450SU-1.Biochem Biophys Res Commun,2004,320(1):156-164.
[7] Fujii Y, Kabumoto H, Nishimura K, et al.Purification, characterization, and directed evolution study of a vitamin D3 hydroxylase from Pseudonocardia autotrophica. Biochemical and Biophysical Research Communications,2009,385(2): 170-175.
[8] 冯海婷, 陆凌霄, 文鹏, 等.微生物转化制备活性维生素D3的研究进展.生物技术通报,2010,4(5):55-58. Feng H T, Lu L X,Wen P, et al. Advancesin research of preparing active vitamin D3 by microbial transformation. Biotechnolgy Bulletin, 2010,4(5):55-58.
[9] Noriko I, Taiki N, Tomohiro T.Permeabilization induced by lipid II-targeting lantibiotic nisin and its effect on the bioconversion of vitamin D3 to 25-hydroxyvitamin D3 by Rhodococcus erythropolis.Biochemical & Biophysical Research Communications, 2011,405(3):393-398.
[10] Takeda K, Asou T, Matsuda A, et al.Application of cyclodextrin to microbial transformation of vitamin D3 to 25-hydroxyvitamin D3 and 1α, 25- dihydroxyvitamin D 3.Journal of Fermentation & Bioengineering,1994,78(5): 380- 382.
[11] Yasutake Y, Tamura T.Efficient production of active form of vitamin D3 by microbial conversion.Synthesiology,2011,4(4):222-229.
[12] Aiba I, Yamasaki T T, Izumi S, et al.Characterization of rat and human CYP2J enzymes as Vitamin D 25-hydroxylases.Steroids,2006,71(10):849-856.
[13] Sakaki T, Sugimoto H, Hayashi K, et al.Bioconversion of vitamin D to its active form by bacterial or mammalian cytochrome P450.Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics,2011,1814(1):249-256.
[14] Umbach A T, Bingbing Z, Christoph D, et al.Janus kinase 3 regulates renal 25-hydroxyvitamin D 1α-hydroxylase expression, calcitriol formation, and phosphate metabolism.Kidney International,2015,87(4):728-737.
[15] Yasutake Y, Fujii Y, Cheon W K, et al.Crystallization and preliminary X-ray diffraction studies of vitamin D3 hydroxylase, a novel cytochrome P450 isolated from Pseudonocardia autotrophica.Acta Crystallographica,2009,65(4):372-375.

[1] 胡艳红,龚雪梅,丁柳柳,高嵩,李婷婷. 利用短短芽孢杆菌进行酮还原酶CgKR2的高效表达与纯化 *[J]. 中国生物工程杂志, 2019, 39(8): 59-65.
[2] 巩凤芹,刘启顺,谭海东,金花,谭成玉,尹恒. MOFs固定5-羟甲基糠醛氧化酶及其催化活性的研究 *[J]. 中国生物工程杂志, 2019, 39(6): 41-47.
[3] 李检秀,陈先锐,陈小玲,黄艳燕,莫棋文,谢能中,黄日波. 应用合成生物学策略构建全细胞生物催化剂合成(S)-乙偶姻 *[J]. 中国生物工程杂志, 2019, 39(4): 60-68.
[4] 唐存多,史红玲,马越,丁朋举,许建和,阚云超,姚伦广. 新型R-扁桃酸脱氢酶的基因挖掘及表达鉴定 *[J]. 中国生物工程杂志, 2018, 38(2): 30-37.
[5] 成采虹, 杜婷, 陈可泉, 李艳. 赖氨酸酰化酶的重组表达及其催化合成ε-月桂酰-L-赖氨酸[J]. 中国生物工程杂志, 2016, 36(2): 62-67.
[6] 马晨露, 唐存多, 史红玲, 王瑞, 岳超, 夏敏, 邬敏辰, 阚云超. 头孢菌素C乙酰化酶的半理性改造及7-ACA的生物合成[J]. 中国生物工程杂志, 2015, 35(12): 65-71.
[7] 汤玉兰, 陈缵光, 成志毅. 多酶共固定化反应体系的研究进展[J]. 中国生物工程杂志, 2015, 35(1): 82-87.
[8] 唐存多, 史红玲, 唐青海, 焦铸锦, 阚云超, 邬敏辰, 李剑芳. 生物催化剂发现与改造的研究进展[J]. 中国生物工程杂志, 2014, 34(9): 113-121.
[9] 岳昌武, 李园园, 吕玉红, 王苗, 邵美云, 刘明皓, 黄英. 海洋链霉菌Streptomyces olivaceus FXJ7.023来源多功能几丁质酶的克隆、表达及鉴定[J]. 中国生物工程杂志, 2014, 34(8): 47-53.
[10] 刘玉雪, 张祎昕, 王磊, 林心萍, 朱志伟, 赵宗保. 重组酿酒酵母催化二氢大豆苷元生产雌马酚[J]. 中国生物工程杂志, 2014, 34(4): 41-45.
[11] 赵伟睿, 胡升, 黄俊, 梅乐和. 微生物细胞通透性改善方法与策略[J]. 中国生物工程杂志, 2014, 34(3): 125-131.
[12] 曾贞, 杨军方, 杨成丽, 王鹏, 李大力. S-扁桃酸脱氢酶基因的克隆及表达[J]. 中国生物工程杂志, 2012, 32(02): 29-32.
[13] 雷高新,陈勇,许琳,应汉杰. 酿酒酵母中过表达URA5及URA3基因催化合成UMP的初步研究[J]. 中国生物工程杂志, 2008, 28(12): 77-81.
[14] 汤亚杰,李艳,徐小玲,李冬生. 天然活性先导化合物生物转化研究进展[J]. 中国生物工程杂志, 2007, 27(9): 110-115.
[15] 王建龙. 固定化对微生物生理变化的影响[J]. 中国生物工程杂志, 2003, 23(7): 62-66.