CrPP2C蛋白影响衣藻细胞鞭毛过渡区结构

何炜, 潘俊敏

中国生物工程杂志 ›› 2016, Vol. 36 ›› Issue (5) : 68-73.

PDF(1187 KB)
PDF(1187 KB)
中国生物工程杂志 ›› 2016, Vol. 36 ›› Issue (5) : 68-73. DOI: 10.13523/j.cb.20160510
研究报告

CrPP2C蛋白影响衣藻细胞鞭毛过渡区结构

  • 何炜, 潘俊敏
作者信息 +

Protein Phosphatase 2CInvolved in the Flagellar Transition Zone Structure of Chlamydomonas reinhardtii

  • HE Wei, PAN Jun-min
Author information +
文章历史 +

摘要

目的:在莱茵衣藻细胞中构建并筛选鞭毛组装缺陷突变体,克隆缺陷基因,探索其对鞭毛组装的影响。方法:使用带有巴龙霉素(Paromomycin)抗性的基因片段随机插入衣藻细胞基因组中,通过性状筛选和基因序列分析获得与CrPP2C(Chlamydomonas reinhardtii type 2C protein phosphatase)基因相关的鞭毛异常突变体,根据突变体基本生物学性状和生化分析对CrPP2C基因的功能进行分析。结果:采用电转法成功获得衣藻细胞鞭毛缺陷相关突变体,部分细胞具有短鞭毛,部分细胞则不具有鞭毛;通过RESDA-PCR(restriction enzyme site-directed amplification PCR)对突变体基因序列分析,鞭毛缺陷性状由CrPP2C基因遭到破坏导致;把含有完整CrPP2C基因的重组质粒通过电转法导入突变体后,其鞭毛几乎恢复为野生型长度,并可检测到PP2C-HA融合蛋白的表达;观察鞭毛再生,突变体鞭毛只能再生为原有长度;使用药物处理使鞭毛缩短,突变体鞭毛能正常解聚;电镜检测突变体的鞭毛显微结构,发现过渡区的Y形结构缺陷。结论:CrPP2C基因的破坏导致鞭毛过渡区结构缺失,影响鞭毛组装过程,不组装鞭毛或组装短鞭毛。

Abstract

Objective:Using insertional mutagenesis in Chlamydomonas to identify genes required for flagellar assembly, so as to researching the function of the gene related to flagellar assembly. Methods:By transforming the DNA fragment harboring paromomycinresistance gene into Chlamydomonas randomly, the mutant strainwith flagellar defect is obtained and identified the disrupted gene was CrPP2C(Chlamydomonas reinhardtii type 2C protein phosphatase).Then the CrPP2C gene function is analyzed by biochemistry methods. Results:Theflagella abnormal mutantsthat show short flagella or none flagella are obtained by electroporation transformation.DNA sequence analysis show that the CrPP2C gene is disrupted. Transformation of mutants with CrPP2C-HA could rescue the flagellar phenotype.The mutants could regenerateflagella to the original length and shorte normally. Electron microscopyimages show incomplete Y-link structure in the transition zone of flagella. Conclusion:The CrPP2C gene is associated with the transition zone structure and affects the assembly of flagella.

关键词

莱茵衣藻 / 鞭毛过渡区 / 2C型蛋白磷酸酶

Key words

Flagellar transition zone / Chlamydomonas reinhardtii / CrPP2C

引用本文

导出引用
何炜, 潘俊敏. CrPP2C蛋白影响衣藻细胞鞭毛过渡区结构[J]. 中国生物工程杂志, 2016, 36(5): 68-73 https://doi.org/10.13523/j.cb.20160510
HE Wei, PAN Jun-min. Protein Phosphatase 2CInvolved in the Flagellar Transition Zone Structure of Chlamydomonas reinhardtii[J]. China Biotechnology, 2016, 36(5): 68-73 https://doi.org/10.13523/j.cb.20160510
中图分类号: Q819   

参考文献

[1] Muqing C, Junmin P. Cilia and ciliopathies. Chinese Journal of Cell Biology, 2012, 34(9): 849-856.
[2] Chih B, Liu P, Chinn Y, et al. A ciliopathy complex at the transition zone protects the cilia as a privileged membrane domain. Nature Cell Biology, 2012, 14(1): 61-72.
[3] Czarnecki P G, Shah J V. The ciliary transition zone: from morphology and molecules to medicine. Trends in Cell Biology, 2012, 22(4): 201-210.
[4] Garcia-Gonzalo F R, Corbit K C, Sirerol-Piquer M S, et al. A transition zone complex regulates mammalian ciliogenesis and ciliary membrane composition. Nature Genetics, 2011, 43(8): 776-784.
[5] Lambacher N J, Bruel A L, van Dam T J P, et al. TMEM107 recruits ciliopathy proteins to subdomains of the ciliary transition zone and causes Joubert syndrome. Nature Cell Biology, 2016, 18(1): 122-131.
[6] Wang H, Gau B, Slade W O, et al. The global phosphoproteome of Chlamydomonasreinhardtii reveals complex organellar phosphorylation in the flagella and thylakoid membrane. Molecular & Cellular Proteomics, 2014, 13(9): 2337-2353.
[7] Shi Y. Serine/threonine phosphatases: mechanism through structure. Cell, 2009, 139(3): 468-484.
[8] Grothe K, Hanke C, Momayezi M, et al. Functional characterization and localization of protein phosphatase type 2C from Paramecium. Journal of Biological Chemistry, 1998, 273(30): 19167-19172.
[9] Noguchi M, Sasaki J Y, Kamachi H, et al. Protein phosphatase 2C is involved in the cAMP‐dependent ciliary control in Paramecium caudatum. Cell Motility and the Cytoskeleton, 2003, 54(2): 95-104.
[10] Sager R, Granick S. Nutritional studies with Chlamydomonasreinhardi. Annals of the New York Academy of Sciences, 1953, 56(5): 831-838.
[11] Kim S, Tsiokas L. Cilia and cell cycle re-entry: more than a coincidence. Cell Cycle, 2011, 10(16): 2683-2690.
[12] Sung C H, Li A. Ciliary resorption modulates G1 length and cell cycle progression. Cell Cycle,2011, 10(17): 2825-2826.
[13] Hilton L K, Gunawardane K, Kim J W, et al. The kinases LF4 and CNK2 control ciliary length by feedback regulation of assembly and disassembly rates. Current Biology, 2013, 23(22): 2208-2214.
[14] Avidor-Reiss T, Gopalakrishnan J. Cell cycle regulation of the centrosome and cilium. Drug Discovery Today: Disease Mechanisms, 2013, 10(3): e119-e124.
[15] Parker J D K, Hilton L K, Diener D R, et al. Centrioles are freed from cilia by severing prior to mitosis. Cytoskeleton, 2010, 67(7): 425-430.

基金

国家自然科学基金资助项目(31330044)


PDF(1187 KB)

878

Accesses

0

Citation

Detail

段落导航
相关文章

/