生物转化法制备L-天冬酰胺

张奇, 张露, 徐友强, 裴疆森, 程池

中国生物工程杂志 ›› 2016, Vol. 36 ›› Issue (1) : 63-67.

PDF(642 KB)
PDF(642 KB)
中国生物工程杂志 ›› 2016, Vol. 36 ›› Issue (1) : 63-67. DOI: 10.13523/j.cb.20160109
技术与方法

生物转化法制备L-天冬酰胺

  • 张奇1,2, 张露1, 徐友强1,2, 裴疆森1,2, 程池1
作者信息 +

L-asparagine Production by Biotransformation Method

  • ZHANG Qi1,2, ZHANG Lu1, XU You-qiang1,2, PEI Jiang-sen1,2, CHENG Chi1
Author information +
文章历史 +

摘要

探索生物转化法制备L-天冬酰胺的技术与工艺。通过分子生物学方法,克隆来源于大肠杆菌(Escherichia coli, E.coli)JM109的天冬酰胺合成酶A基因asnA,并于E. coli BL21(DE3)中表达,利用构建的E.coli基因工程菌E.coli BL21(DE3)/pET28a(+)-asnA全细胞高密度催化L-天冬氨酸生产L-天冬酰胺,以PITC柱前衍生-高效液相检测底物和产物。表达的蛋白质分子质量约为37kDa,与预期大小相符,比酶活力为1786.6U/g。L-天冬氨酸转化率为95.8%,L-天冬酰胺产量可达126.5g/L,生产速率为15.81g/(L·h)。结果表明,已成功构建高效表达天冬酰胺合成酶A基因工程菌株,并用于催化L-天冬氨酸转化生产L-天冬酰胺,解决了L-天冬酰胺生物转化生产工艺中ATP成本过高的难题,为L-天冬酰胺制备提供新的绿色途径。

Abstract

The novel biotransformation method is developed for preparing L-asparagine. Asparagine synthetase gene A (asnA) from Escherichia coli (E. coli) JM109 is amplified and transformed into E. coli BL21 (DE3) using molecular biological methods, and then the ASNA is expressed. After analyzing the ASNA activity, the constructed strain E. coli BL21 (DE3)/pET28a (+)-asnA is applied on conversion from L-aspartic acid to L-asparagine. The substrate and product are detected by PITC column derivatization-high performance liquid. The molecular weight of expressed protein is of about 37kDa by SDS-PAGE, which is consistent with the expected size. The enzyme activity is 1 786.6U/g wet cell. The conversion ratio of L-aspartic acid is 95.8%, the yield of L-asparagine is up to 126.5g/L, and the production rate is 15.81g/(L·h). E. coli BL21 (DE3)/pET28a (+)-asnA engineered strain is constructed successfully. Then it is used to catalyze the conversion of L-aspartic acid to L-asparagine, and ATP is not necessarily in the production process, which results in the lower cost and provides a novel green method for preparing L-asparagine.

关键词

L-天冬酰胺 / 生物转化 / 天冬酰胺合成酶 / L-天冬氨酸

Key words

L-aspartic acid / Biotransformation / L-asparagine / Asparagine synthetase A

引用本文

导出引用
张奇, 张露, 徐友强, 裴疆森, 程池. 生物转化法制备L-天冬酰胺[J]. 中国生物工程杂志, 2016, 36(1): 63-67 https://doi.org/10.13523/j.cb.20160109
ZHANG Qi, ZHANG Lu, XU You-qiang, PEI Jiang-sen, CHENG Chi. L-asparagine Production by Biotransformation Method[J]. China Biotechnology, 2016, 36(1): 63-67 https://doi.org/10.13523/j.cb.20160109
中图分类号: Q815   
免疫分析、蛋白质芯片和生物传感器技术由于其灵敏度高、成本低、通量大等优势,已经被广泛用于临床诊断、药物筛选、食品检测和环境保护等领域[1,2,3]。 这些技术中最为核心的成分是用于识别靶标的抗体,在应用中通常需要将抗体连接到固相表面形成固定化抗体,抗体在固相表面的密度、空间构象、抗原结合位点的取向等因素则对其抗原捕获能力有关键的影响,从而决定分析的灵敏度。
抗体通常是分子质量大约为150kDa的免疫球蛋白G(Immunoglobulin G,IgG),其分子三维大小约为14nm×10nm×4nm,含有两个Fab片段和一个Fc片段,两个Fab片段由铰链区的二硫键结合在一起形成F(ab')2片段[4]。 不同抗体的Fab片段其氨基酸组成、等电点及物理结构均有较大差异,这对抗体在固相表面的取向起决定作用。 在理想状态下,固定的抗体应保持天然构象,Fc片段朝向固相表面,Fab片段则暴露于液相中,相邻的抗体分子之间不存在抗原结合的空间位阻,以此最大化抗原的结合能力。 但是通常在随机固定的抗体中会有不同的空间取向,使抗体丧失了部分的活性(图1)[5]
图1 抗体的结构及固定化抗体的空间取向

Fig.1 Structure of antibodies and the orientation of immobilized antibodies

Full size|PPT slide

近年来,随着对分析方法灵敏度要求的不断提高,抗体的固定化研究也取得了很大的进展。 研究人员主要从两个方面对抗体的固定方法进行不断改进:一是对固相材料本身进行化学改性,降低其非特异性吸附;二是对固定方法进行改进,使抗体在表面的固定具有更强的定向性和有序性。

1 抗体固定化方法

1.1 物理吸附

物理吸附是指通过离子键、静电作用、疏水力及极性相互作用等非共价形式固定至固相表面,是目前最简单的抗体固定方法。 物理吸附的优点是反应简单、快速且不需要添加偶联试剂或对目标抗体进行修饰,但有以下缺陷:①不可控制抗体偶联的定向性,抗体吸附至固相表面的随机性强,可能会屏蔽其结合位点使抗原结合活性下降;②不能控制固定抗体的密度从而产生空间位阻;③物理吸附结合力相对较弱,在后续应用时抗体可能发生解吸附。
常用于固定抗体的固相材料包括塑料(聚苯乙烯和硅树脂[6])、膜(硝酸纤维素膜[7]和尼龙[8])和金属表面[9]。 其中聚苯乙烯是最广泛应用于酶联免疫吸附测定(enzyme linked immunosorbent assay,ELISA)的固相载体[10]。 为了改善物理吸附的负面影响,许多研究者通过对固相载体进行修饰从而提高其亲水性及生物相容性。 Wang等[11]从灰树花中提取疏水蛋白对聚苯乙烯表面进行修饰,并通过癌胚抗原的时间分辨免疫荧光测定来评价疏水蛋白改性的聚苯乙烯对抗体的吸附性能,疏水蛋白可在聚苯乙烯表面自组装形成10nm厚的两亲性膜,疏水部分与聚苯乙烯结合,亲水部分与抗体结合;结果表明,两亲性膜不仅可增加聚苯乙烯的亲水性,还可以通过静电作用固定抗体;修饰后的聚苯乙烯对癌胚抗原的检测范围为5~600ng/ml,相对于未修饰的聚苯乙烯具有更高的灵敏度和更低的非特异性吸附。
Xu等[12]使用原子力显微镜(atomic force microscopy,AFM)和中子反射(neutron reflectometry,NR)研究在亲水性二氧化硅/水界面处的小鼠抗人绒毛膜促性腺激素β单位单克隆抗体的构象取向,发现抗体主要以“平躺”的方式与表面结合,即Fc端与Fab端均平躺在表面上,AFM成像进一步显示相邻的抗体分子由于相互作用在表面形成了不均匀的聚集体。
Želiszewska等[13]通过多普勒激光测速电泳迁移率测量法和AFM测定蛋白质最大的覆盖度来研究单克隆IgG吸附在带负电荷聚苯乙烯微球表面的机制。研究表明,IgG吸附到聚苯乙烯微球上是不可逆的,pH在3.5~10包覆的IgG结构是稳定的,IgG最大的覆盖率在2.1~3.4mg/m2;证实IgG抗体与白蛋白分子比较,对聚苯乙烯具有更高的亲和力,因此在pH7.4下使用白蛋白作为封闭剂的效果可以忽略,封闭步骤可省略,该结果证明IgG抗体与白蛋白分子比较,对聚苯乙烯具有更高的亲和力。

1.2 通过抗体-COOH、-NH2的抗体固定化

共价偶联可改善物理吸附的不足之处,减小抗体固定过程的随机性并增强固定抗体的稳定性。 组成抗体的20种天然氨基酸中,只有赖氨酸、谷氨酸和天冬氨酸等很少几种氨基酸的侧链可用于共价偶联,而对于其他氨基酸则由于包埋在抗体内部不可接近、反应性弱或不可控而很少用于偶联。 除侧链的ε-氨基外,N端的α-氨基和C端的羧基也具有较强的反应活性。 一个典型的IgG分子上大约含有120个赖氨酸残基可用于偶联。
目前最为广泛应用于羧基和氨基的偶联剂为1-(3-二甲氨基丙基)-3-乙基碳二亚胺[1-(3-dimethylaminopropyl)-3-ethylcarbodiimide,EDC][14,15]和1-环已基-2-吗啉乙基碳二亚胺[1-cyclohexyl-3-(2-(4-morpholinyl)ethyl)carbodiimide,CMC][16],它们可单独使用,一步法直接将抗体固定到羧基或氨基的固相表面。 也可以用两步法,先将EDC(或CMC)与N-羟基琥珀酰亚胺(N-hydroxysuccinimide,NHS)联合使用,将固相的羧基活化成NHS活化酯,然后与抗体的氨基形成酰胺键。 两步法常优于一步法的原因在于两步法得到的NHS更稳定且活化效率高,同时不会造成一步法可能造成的抗体自身交联。
Sam等[17]对EDC/NHS活化羧基表面进行了深入的研究,首先羧基与EDC反应生成不稳定的O-酰基脲中间体,接下来O-酰基脲中间体有三种反应途径——与NHS进一步反应生成相对稳定的NHS活化酯,或与邻近的羧基反应生成酸酐,或分子内发生酰基迁移重排生成N-酰基脲。此外,生成的酸酐也可以与进一步反应NHS生成一分子的活化酯和一分子的羧酸(图2)。 单纯通过酸酐途径产生的NHS活化酯效率不高,只有在EDC和NHS的浓度在特定的范围时才能使羧基活化基本完全。
图2 EDC/NHS活化羧基表面的反应机理

Fig.2 Reaction mechanism of carboxylated surface activated by EDC/NHS

Full size|PPT slide

有研究表明并不是EDC/NHS两步法一定优于EDC一步法,Vashist[18]研究3-氨基丙基三乙氧基硅烷(APTES)修饰金芯片和96孔板表面,与抗人胎球蛋白A(HFA)偶联,单独使用EDC,与NHS或sulfo-NHS组合使用,并用表面等离子共振(surface plasmon resonance,SPR)免疫测定和夹心ELISA作比较,结果表明EDC在pH7.4下比EDC/NHS和EDC/sulfo-NHS更有效地将抗HFA抗体与APTES官能化的固相表面交联。 Raghav和Srivastara[19]使用三种策略固定CA125抗体:①用EDC/NHS活化柠檬酸盐包覆金纳米颗粒(cit-AuNPs);②直接在cit-AuNPs上进行物理吸附;③直接在L-天冬酰胺包覆的cit-AuNPs上进行物理吸附。结果显示第三种方案比其他两种方法有更高的灵敏度,且氨基酸包覆cit-AuNPs确保定向固定,较少随机化。
将氨基与抗体偶联的另一种常用的交联剂为戊二醛[20]。 Gunda等[21]使用APTES包覆在硅基地表面形成稳定的硅烷层,再经过戊二醛处理接上醛基接头,与抗体进行偶联。夹心免疫测定结果显示硅烷的包覆层有助于增加固相表面上生物分子的密度,进一步提高免疫测定的灵敏度。
基于氨基和羧基的抗体固定随机性较强,有时在Fab片段抗原结合区域附近会有反应性较强的氨基或羧基,此时通过氨基或羧基的固定方式容易造成抗体的失活。

1.3 通过-SH对抗体进行定向偶联

半胱氨酸是唯一拥有侧链巯基的天然氨基酸,在蛋白质中平均含量小于1% [22,23,24],但在IgG分子中,游离巯基是极为罕见的。半胱氨酸的侧链巯基通常以二硫键的形式包埋在蛋白质三维结构的内部,利用二硫苏糖醇(DTT)、巯基乙醇、三(2-羧乙基)膦等还原抗体铰链区的二硫键可以生成游离巯基[25,26,27,28,29]。 巯基的pKa在8.5左右,在中性和酸性条件下表现亲核性,可以通过表面含有α-乙酰或者马来酰亚胺基团的固相表面进行定向固定[30,31],得到的固相抗体在水溶液中可以稳定保存[32]
最常用的乙酰衍生物是包含碘乙酰基的复合物,碘乙酰基可以通过对称酸酐结构连接到含有氨基的微粒上,使固相表面的末端基团由氨基转换为碘乙酸基团,随后和抗体上的巯基基团进行定向偶联[33]。 碘乙酰基在pH为7.0时能与抗体中的组氨酸侧链或末端氨基反应,但通过控制反应物含量和pH,可以使抗体的巯基成为唯一反应基团[34]
马来酰亚胺的双键在pH6.5~7.5与巯基有很高的反应活性。 利用同型或者异型双功能交联剂,可以将固相表面末端的氨基或者羧基转化为马来酰亚胺基团[35];在合成固相颗粒时也可以直接在颗粒上包被末端含有马来酰亚胺的聚合物,用来和抗体的巯基偶联[36]
除了上述常见的反应外,巯基还可以和氮丙环开环亲核加成反应形成偶联。 Tuci等[37]报道合成了表面为氮丙环的多壁碳纳米管(multi-walled carbon nanotube,MWCNT),将叠氮甲酸叔丁酯加入到含有MWCNT的邻二氯苯溶液中,通过[2+1]环加成反应,生成叔丁氧羰基(t-butyloxy carbonyl,BOC)-多壁碳纳米管(MW@NBOC)中间结构,随后在动态超高真空控制下热处理12h,使MW@NBOC生成表面为氮丙环的多壁碳纳米管(MW@NAz),反应终产物MW@NAz保存在氮气环境中更加稳定。 这使通过表面为氮丙环的固相对抗体巯基进行定向偶联成为可能。

1.4 点击化学用于抗体固定化

点击化学是2001年由美国化学家Sharpless提出的合成概念[38],其中以叠氮化物和炔烃的1,3-偶极环加成反应生成1,2,3-三唑最具有代表性。 该反应条件温和,产率高,近年来在蛋白质尤其是抗体的固定化中应用逐渐增多。
Finetti等[39]用该方法合成了偶联羊抗鼠IgG的金纳米粒,具体过程为:首先在制备的金纳米粒表面生长一层极薄的SiO2层,然后用聚(DMA-PMA-MAPS)包覆,聚合物侧链上含有炔烃;然后用azido-PEG8-NHS修饰IgG引入叠氮基,最后将聚合物包覆的金纳米粒和修饰的IgG在CuSO4/三(3-羟丙基三唑基甲基)胺/L-抗坏血酸的辅助下发生点击反应。
1,3-偶极环加成反应分为Cu(I)催化的反应和无催化剂两种类型,由于Cu(I)可能对某些敏感的蛋白质具有损害作用,因此对于涉及蛋白质的反应人们更多采取的是无催化剂的环加成,如环张力驱动的环加成(strain-promoted azide-alkyne cycloaddition,SPAAC),此时炔烃为具有较高环张力的环炔烃,如环辛炔。
Trilling等[40]采用骆驼重链抗体可变区(VHH)构建了一种SPR生物传感器用于口蹄疫病毒的检测,在基因重组的VHH的C端引入侧链带有叠氮基的丙氨酸,将传感器芯片表面的羧甲基葡聚糖修饰末端含有炔烃的PEG衍生物,VHH和葡聚糖通过点击反应键合在一起。

1.5 利用糖基固定化

通常情况下,抗体的Fc端均有不同程度的糖基化修饰,Fc端远离抗体的抗原结合区域Fab,通过Fc端进行抗体固定能够使抗体获得更好的空间取向,保留更多的抗原结合能力。 利用糖基固定化抗体的方法主要有高碘酸钠氧化法及亚硼酸连接法。
1.5.1 高碘酸钠氧化法 利用高碘酸钠氧化糖基的顺式二醇产生游离醛基,然后固定到氨基或酰肼表面。 高碘酸钠氧化顺式二醇产生醛基的关键点在于抗体氧化程度的控制,氧化程度不足会导致引入的醛基数量少,影响后续的反应,氧化过度会导致形成羧基而不是醛基,而且会修饰抗体的其他氨基酸残基而使抗体部分失活。 Wolfe和Hage[41]以多克隆兔IgG为模型,研究了高碘酸钠在乙酸盐缓冲液中对IgG的氧化反应,发现控制高碘酸钠浓度、pH、温度和时间,可以精确控制IgG上修饰的醛基数量。 IgG上引入醛基以后,可以和氨基形成席夫碱,席夫碱不稳定,需要用NaBH4或者NaCNBH3还原成稳定的仲胺。 由于IgG分子自身也有许多氨基能够与另一IgG分子的醛基形成席夫碱,可能会形成自身交联而降低固定化效率,因此更为实用的方法是将醛基化的IgG在弱酸性条件下连接到酰肼的表面,此时形成的席夫碱最少,生成的腙键相对于席夫碱也更加稳定,可以满足大多数应用的需要,如果需要,还可以用NaCNBH3将其还原为更加稳定的取代酰肼。 Puertas等[42]采用高碘酸钠氧化法将抗hCG抗体固定到Estapor􀳏 氨基磁性微球上,制备的微球用于侧向免疫层析的检测灵敏度显著高于用EDC/NHS固定的抗体。
1.5.2 亚硼酸连接法 亚硼酸下能与糖基的顺式二醇形成五元环或六元环的硼酸酯,基于这一相互作用,近来有较多用连接有氨基苯硼酸的支持物来定向固定抗体的报道。 尽管亚硼酸与顺式二醇的反应在室温即可进行,但形成的酯在生理条件下不稳定,其他糖蛋白有可能竞争结合亚硼酸导致已固定蛋白质的脱落。 Adak等[43]用一种交联剂克服了亚硼酸连接法的这一缺陷。 这种交联剂具有分支结构,分支的一端含有亚硼酸基团,另一端含有光反应性的双吖丙啶(图3),首先将玻片表面修饰这种双功能交联剂,然后将抗体与亚硼酸基团反应形成硼酸酯使抗体获得正确的空间取向,最后在365nm的紫外线下活化双吖丙啶形成有活性的碳烯中间体,该中间体与最邻近的抗体侧链形成稳定的共价键。
利用糖基固定抗体的不足之处是抗体的糖基化程度不一,某些单抗糖基化程度低甚至没有糖基化修饰,限制了这种方法的应用。
图3 光反应性探针辅助的亚硼酸连接法用于抗体固定

Fig. 3 Photo affinity probe-assisted BA conjugation for antibody immobilization

Full size|PPT slide

1.6 Staudinger连接固定抗体

Staudinger连接是Saxon和Bertozzi[44]在经典Staudinger反应的基础上作出的一种改进形式,反应的发生需要叠氮基和含有膦的酯或硫酯参与。 其反应机制为首先叠氮基和膦结合形成膦亚胺中间体,然后膦亚胺的N原子对酯键的C发动亲核进攻形成五元环的氨基膦盐,随后五元环水解形成酰胺键。 Staudinger连接在水溶液中发生,反应温和可控,几乎定量生成产物而没有显著的副产物。
Soellner等[45]首次报道采用Staudinger连接固定蛋白,他们以核糖核酸酶S'作为蛋白质模型,先在15残基的多肽主链或侧链上引入叠氮基,然后通过Staudinger连接固定在末端含有二苯基膦的玻片表面,再将修饰的玻片与核糖核酸酶S'的残余序列温育,两者结合形成具有催化活性的完整的核糖核酸酶S'。 Staudinger连接固定蛋白质的主要缺点在于需要在蛋白质中引入含叠氮基的氨基酸,如甲硫氨酸类似物(2S)-2-氨基-4-叠氮基丁烷酸[46],或非天然氨基酸p-叠氮基-L-苯丙氨酸[47],可能会对蛋白质的活性有影响。

1.7 Diels-Alder反应固定抗体

Diels-Alder是有机合成中广泛应用的一类经典反应,通常指的是顺式1,3-二烯底物与另一个双键或三键底物经过环加成反应生成不饱和六元环的反应。 由于Diels-Alder反应在水相中比有机相中具有更快的反应速率和更好的立体选择性,因此尤其适用于蛋白质的固定。 Shi等[48]合成了一种可生物降解的接枝共聚物,并用透析法制备成自组装的纳米粒,纳米粒表面含有呋喃基团,然后将Herceptin单抗的糖基进行修饰,引入马来酰亚胺基团,最后将纳米粒和马来酰亚胺修饰的抗体在弱酸性缓冲液中37℃温育反应得到靶向HER2过度表达的乳腺癌细胞的免疫纳米粒,这种纳米粒具有用于靶向药物载体的潜能(图4)。
图4 通过Diels-Alder反应制备Herceptin 单抗偶联纳米粒

Fig.4 Preparation of Herceptin monoclonal antibodies conjugated nanoparticles by Diels-Alder reaction

Full size|PPT slide

1.8 自然化学连接固定抗体

自然化学连接是最早由Kent提出的一种用于连接两条多肽链合成蛋白质的方法[49],其原理是一条多肽链氨基末端的半胱氨酸残基对另一条多肽链末端α-羧基的硫酯进行亲核进攻,形成的硫酯中间体自发重排生成在连接位点处具有一个天然肽键的连接产物。
Reulen等[50]以增强型黄色荧光蛋白(EYFP)为模型,研究了用自然化学连接将EYFP固定到脂质体上的过程。 首先在大肠杆菌中表达带有内含肽和几丁质结合结构域(CBD)的EYFP融合蛋白,将EYFP融合蛋白结合到几丁质树脂上,然后用巯乙基磺酸钠(MESNA)处理,诱导内含肽自剪切形成C端含有硫酯的EYFP,最后将含有硫酯的EYFP通过自然化学连接固定到表面含有半胱氨酸的脂质体上(图5)。
图5 末端含有硫酯的EYFP及连接有EYFP的脂质体的制备

Fig. 5 Preparation of thioester-terminated EYFP and EYFP functioned liposomes

Full size|PPT slide

1.9 基于亲和作用的抗体固定

1.9.1 通过生物素-链霉亲和素的固定 生物素和链霉亲和素具有极强的亲和力(Kd=10-14 L/mol),链霉亲和素具有4个生物素结合位点,4个位点两两靠近,使得链霉亲和素可以作为桥连分子将生物素化的蛋白质和固相连接在一起。 Yang等[51]采用氨酰-tRNA合成酶/阻抑tRNA和Avitag/BirA技术制备了可被光活化的生物素化Z结构域(来源于蛋白质A的B结构域,仅与抗体的Fc片段结合)突变体,然后在紫外线照射下将其与IgG交联(图6),使抗体的Fc片段被定向生物素化,与NHS-biotin对IgG的随机生物素化相比,定向生物素化的IgG具有更高的灵敏度。
图6 位点特异性定向共价偶联生物素化IgG的策略

Fig.6 Site-specific and covalent conjugation strategy for IgG biotinylation

Full size|PPT slide

1.9.2 通过蛋白质A和蛋白质G的固定 蛋白质A和蛋白质G分别是金黄色葡萄球菌和链球菌细胞壁上的一种蛋白质成分,与哺乳动物血清中IgG具有高度的亲和性,目前这两种蛋白质常用于单克隆抗体的亲和层析纯化。 由于蛋白质A和蛋白质G结合的是IgG的Fc端,因此通过蛋白质A和蛋白质G为桥连固定的抗体具有Fab端游离的空间取向,因此最大限度保留了抗原结合的能力。在一项早期研究中,Schneider等[52]用先用结合有蛋白质A的Sepharose CL-4B凝胶与目标单抗温育,使单抗通过蛋白质A结合到凝胶上,然后通过交联剂己二酰亚胺酸二甲酯(dimethyl adipimidate)将单抗和蛋白质A化学交联形成稳定的复合物,该复合物在强酸、强碱缓冲液以及含有高浓度表面活性剂的溶液中均有良好的稳定性。 这种亲和基质可用于从细胞裂解物中一步分离目标单抗对应的靶抗原。 Soler等[53]在末端具有烷基硫醇的自组装单层(self-assembled monolayer,SAM)上将蛋白质G共价固定,然后通过蛋白G将待固定的抗体捕获,最后用交联剂双(硫代琥珀酰亚胺)辛二酸酯将蛋白G和抗体共价连接。
1.9.3 Fc结合多肽介导的固定 相对于蛋白质A或蛋白质G而言,与抗体Fc端具有亲和力的小分子多肽具有更好的灵活性和稳定性,在抗体的固定中也偶有应用。 Jung等[54]将环状多肽通过PEG的连接臂固定到羧基葡聚糖的芯片表面,抗C-反应蛋白(CRP)多克隆抗体通过Fc端与多肽的亲和作用间接固定到芯片表面,用这种方式固定的抗体相对于EDC/NHS连接固定的抗体,其CRP结合能力显著提高。
1.9.4 DNA介导的固定 基于两条互补的DNA链的高度特异性结合,利用DNA杂交也可以作为固定蛋白质的一种手段,可以根据需要将硫代吡啶基或马来酰亚胺基修饰的寡核苷酸与蛋白质的半胱氨酸残基偶联,或将NHS修饰的寡核苷酸与蛋白质的赖氨酸残基偶联,或者将醛基修饰的寡核苷酸连接到酰肼修饰的抗体上。 在固相表面引入与抗体上寡核苷酸互补配对的反义寡核苷酸链,从而将抗体通过DNA的“桥接”固定在固相表面。 Seymour等[55]构建了一种可以检测单个纳米粒子的单颗粒干涉反射成像传感器(single-particle interferometric reflectance imaging sensor),他们利用荧光轴向定位技术对偶联了DNA序列的抗体在芯片聚合物的三维表面进行了表征,观察表明DNA连接臂显著提高了抗体在三维表面的高度。 他们还用这种芯片对假型水疱性口炎病毒进行了检测,结果表明通过DNA固定的抗体达到最大病毒捕获效率时的抗体密度为0.72ng/mm2,而通过常规的NHS法直接固定的抗体则为其6倍。 Seymour等认为直接固定的抗体之间存在空间位阻,封闭了部分抗原结合位点,而通过DNA固定的抗体由于与聚合物表面的距离增大,空间位阻效应不显著,因此具有更高的抗原捕获效率。
1.9.5 核苷酸结合位点介导的抗体固定 核苷酸结合位点(nucleotide binding site,NBS)是所有免疫球蛋白分子可变区中的高度保守区域,NBS序列中富含芳香族氨基酸,这些芳香氨基酸可以与核苷酸或其他带有侧链苯环的氨基酸发生π-π堆积作用而显示较高的亲和力。 Alves等[56]鉴定了一种小分子配体吲哚-3-丁酸(indole-3-butyric acid,IBA),其与不同亚型抗体的NBS具有Kd为1 ~ 8μmol/L的亲和力。 他们先将IBA的衍生物共价连接到马来酸酐聚合物包被的96孔板上,然后IBA通过与NBS的亲和作用将抗体捕获到微孔板表面,IBA的苯环和抗体氨基酸侧链的苯环在空间足够接近时,用特定波长(254nm)的紫外线激发会产生高活性的自由基,形成将两苯环相连的共价键(图7)。 进一步研究发现,通过NBS固定的抗体比通过氨基固定的抗体和通过物理吸附固定的抗体具有更强的抗原的结合能力。 近来,Mustafaoglu等[57]又将生物素化和核苷酸结合位点两者结合起来,采用IBA-EG11-biotin将抗体Fab片段的NBS区域定向生物素化,再通过中性亲和素包被的微孔板固定生物素化的Fab,ELISA检测的灵敏度显著高于NHS-biotin标记的Fab。
图7 紫外线辅助下的核苷酸结合位点的抗体固定

Fig.7 Site-specific immobilization of antibodies via UV-assisted binding at the nucleotide binding site

Full size|PPT slide

1.9.6 基于金属螯合作用的抗体固定 多聚组氨酸标签是目前重组蛋白中最常用的标签之一,由于多聚组氨酸在多种条件下都可以结合到过渡金属离子Ni2+、Co2+等固定化的金属离子上,因此这些金属离子常用于亲和纯化带有多聚组氨酸标签的融合蛋白。 Baio等[58]用Ni2+螯合的次氮基三乙酸(NTA)作为配体,将带有多聚组氨酸标签的重组抗体固定在支持物上。 虽然Ni2+对多聚组氨酸有较强的亲和力,但这种结合是可逆的,在含有组氨酸簇的其他蛋白质存在下,可能造成已固定抗体的脱落。 Ericsson等[59]对这一缺陷进行了改进, 他们在Ni-NTA的SAM表面引入了光反应性交联剂二苯甲酮,先通过Ni2+将Fc端含有组氨酸标签的人IgG捕获到SAM表面,然后二苯甲酮在360nm紫外线激发下对IgG上的C-H、O-H或N-H键进行进攻,生成新键(图8)。
图8 紫外线辅助下基于金属鳌合的抗体固定

Fig.8 Photo-assisted antibody immobilization via metal chelation

Full size|PPT slide

除Ni以外,还有Cr(III)用于固定抗体的报道,Welch等[60]采用高氯酸铬和乙二胺配制成的水溶液修饰微孔板表面,然后将抗体通过金属配合物为桥连固定在微孔板上,与未经Cr(III)修饰的表面相比,其抗原检测限有了数量级的提高。

1.10 固定化抗体的表征

免疫分析是最常用于评价固定化抗体状态的方法,因为它代表了固定抗体的实际应用。 无论是传统的ELISA还是磁微粒化学发光免疫分析,都要求固定的抗体具有正确的取向、天然的构象以及在固相表面上足够的密度。 而通过免疫分析作为一种间接的功能性分析方法,只能根据测定结果对抗体的状态和取向进行推断,因此研究人员发展了其他独立的补充分析方法对固定化的抗体进行表征。 这些分析手段有X射线光电子能谱(X-ray photoelectron spectroscopy,XPS)、椭圆偏振光谱(spectroscopic ellipsometry,SE)、双偏振干涉分子相互作用(dual polarization interferometry,DPI)、SPR、NR、AFM、石英晶体微天平(quartz crystal microbalance,QCM)、飞行时间二次离子质谱(time-of-flight secondary-ion mass spectrometry,ToF-SIMS)等(表1)。 大部分分析手段都只针对固定蛋白质的密度进行定量,而能对抗体的取向进行探测的手段则很有限[4]
表1 应用于抗体偶联与固相表面的分析技术

Table 1 Application of surface analysis techniques for immobilized antibody

技术方法 输入 输出 信息 应用
XPS[60,61] 单色X射线 光电子 元素和化学成分 定量载体表面抗体的密度
SE[62,63] 椭圆偏振光 光的相位和强度的变化 厚度、折射率、表面粗糙度 模式化分析、推断抗体形态
DPI[64,65] 激光 衰逝波的变化 质量、膜厚度、折射率、密度 通过质量和膜厚度推断抗体形态
SPR[66,67] 多角度单色激光 反射光和吸收光的变化 折射率、膜厚度 通过抗体和抗原的光吸收特性推断其形态
NR[68,69] 中子束 中子束反射后角度和波长的变化 折射率、膜厚度、表面粗糙度 模式化分析、推断抗体形态
AFM[70,71,72,73] 反馈驱动悬臂式纳米尖端 抗体在载体表面的高度、表面张力 表面粗糙度、相位信息、图像 精确定位高于载体表面14nm的抗体
QCM[74,75] 微量天平的共振频率 频率和振幅的变化 质量吸收系数、生物亲和性 通过压电石英晶体对抗体的吸收性和质量推断抗体形态
ToF-SIMS[76,77] 电离金属簇,“一级离子” 电离片段,“二级离子” 元素半定量、化学成分、分子质量 分辨F(ab')2和Fc片段氨基酸的种类及数量

2 展 望

抗体的固定在免疫分析的应用中具有关键作用。 在固定过程中最大程度保留抗体的活性、使抗体在固相表面有正确的空间取向和合理的空间密度是抗体固定化方法需要达到的目标。 由于每一种抗体Fab区域序列和物理化学性质都有很强的变异性,固相表面自身的性质也由于材料的不同而不同,因此很难针对找到一种定向固定抗体的通用方法,但作为固定方法本身需要具有以下特点:(1)反应条件温和,不破坏抗体的天然构象;(2)固定的抗体需要具有尽可能一致的空间取向,使抗原结合位点尽量远离固相表面;(3)固定化工艺的重复性好,利于放大。 随着基因工程抗体技术研究的不断深入,使得重组抗体的某一特定氨基酸位点的定向突变成为可能,因此基于特异性位点的定向偶联技术则可能是未来抗体固定技术的一个发展方向。

参考文献

[1] 李健, 查家华, 万宇. 化学合成L-天门冬酰胺的改进工艺. 中国, CN95112751. 1995-10-31. Li J, Cha J H, Wan Y. Improved process of L-asparagine chemical synthesis.China, CN95112751. 1995-10-31.
[2] Zhang J, Fan J, Venneti S, et al. Asparagine plays a critical role in regulating cellular adaptation to glutamine depletion. Mol Cell, 2014, 56(2): 205-218.
[3] Burda P, Aebi M. The dolichol pathway of N-linked glycosylation. Biochim Biophys Acta, 1999, 1426(2): 239-257.
[4] Imperiali B, O'Connor S E. Effect of N-linked glycosylation on glycopeptide and glycoprotein structure. Curr Opin Chem Biol, 1999, 3(6):643-649.
[5] Patterson M C. Metabolic mimics: the disorders of N-linked glycosylation. Semin Pediatr Neurol, 2005, 12(3): 144-151.
[6] 张维燕, 刘亚亚, 刘旭平, 等. 谷氨酰胺和天冬酰胺对CHO细胞生长、代谢及抗体表达的影响. 中国生物工程杂志, 2014, 34(4): 9-15. Zhang W Y, Liu Y Y, Liu X P, et al. The effects of glutamine and asparagine on CHO cell growth, metabolism and antibody production. China Biotechnology, 2014, 34(4): 9-15.
[7] 詹谷宇, 叶明, 田萍. 从草木樨芽提取天门冬酰胺. 氨基酸和生物资源, 1984, 2: 6-8. Zhan G Y, Ye M, Tian P. Asparagine extraction from Melilotus alba bud. Amino acids & Biotic Resources, 1984, 2: 6-8.
[8] 黄宜基, 周承文, 翟元凤, 等. L-天门冬氨酸胺一水合物的合成. 氨基酸和生物资源, 1984, 6(2):4-5. Huang Y J, Zhou C W, Zhai Y F, et al. Synthesis of Asparagine monohydrate. Amino acids & Biotic Resources, 1984, 6(2):4-5.
[9] Richards N G, Schuster S M. Mechanistic issues in asparagine synthetase catalysis. Adv Enzymol Relat Areas Mol Biol, 1998, 72(1): 145-98.
[10] Ohashi M, Ishiyama K, Kojima S, et al. Asparagine synthetase 1, but not asparagine synthetase 2, is responsible for the biosynthesis of asparagine following the supply of ammonium to rice roots. Plant Cell Physiol, 2015, 56(4): 769-778.
[11] Manhas R, Tripathi P, Khan S, et al. Identification and functional characterization of a novel bacterial type asparagine synthetase A: a tRNA synthetase paralog from Leishmania donovani. J Biol Chem, 2014, 289(17): 12096-12108.
[12] 林深源, 向文胜, 范志金. 除草剂靶酶-天冬酰胺合成酶特性及其抑制剂的研究进展. 农药, 2006, 45(6): 378-380, 384. Lin S Y, Xiang W S, Fan Z J. Herbicide target enzymes-progress on asparagine synthetase characterization and inhibitors.Agrochemicals, 2006, 45(6): 378-380, 384.
[13] Hender J W,Ricker R D, Bidlingmeyer B A, et al. Open Access Overview. . http://cn.agilent.com/cs/library/chromatograms/59801193.pdf.
[14] 沈同, 王镜岩. 生物化学.下册. 第二版. 北京: 高等教育出版社, 1991:87-101. Sheng T, Wang J Y. Biochemistry. II. 2nd ed. Beijing: Higher Education Press, 1991:87-101.
[15] 于自然, 黄熙泰. 现代生物化学. 北京: 化学工业出版社, 2001:200-203. Yu Z R, Huang X T. Modern Biochemistry. Beijing: Chemical Industry Press, 2001:200-203.

基金

烟台市科技发展计划资助项目(2014SF151)


PDF(642 KB)

Accesses

Citation

Detail

段落导航
相关文章

/