Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2016, Vol. 36 Issue (1): 1-6    DOI: 10.13523/j.cb.20160101
研究报告     
登革病毒四型联合重组包膜蛋白III区的表达和免疫原性鉴定
邱丽娟1,2, 赵玉娇1,2, 李多1,2, 黄新伟1,2, 王晓丹1,2, 席珏敏1,2, 潘玥1,2, 陈俊英1,2, 孙强明1,2
1. 北京协和医学院/中国医学科学院医学生物学研究所 昆明 650118;
2. 云南省重大传染病疫苗研发重点实验室 昆明 650118
Expression and Immunological Analysis of Recombinant Tetravalent Envelope Domain III Protein of Dengue Virus
QIU Li-juan1,2, ZHAO Yu-jiao1,2, LI Duo1,2, HUANG Xin-wei1,2, WANG Xiao-dan1,2, XI Jue-min1,2, PAN Yue1,2, CHEN Jun-ying1,2, SUN Qiang-ming1,2
1. Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, China;
2. Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, China
 全文: PDF  HTML
摘要:

登革热在全球范围内广泛流行,但是目前为止却仍然没有疫苗上市,疫苗的开发迫在眉睫。抗体依赖增强感染效应是登革病毒疫苗开发中遇到的一个瓶颈问题。研究表明登革病毒的包膜蛋白III区能够介导中和抗体产生,且诱导产生较少的交叉抗体或无交叉抗体,能够大大减弱抗体依赖增强感染效应,因而是登革热重组蛋白疫苗的首选靶标。通过酵母密码子优化后合成同时包含4种血清型登革病毒包膜蛋白III区的四价联合DV EDIII蛋白序列,随后构建酵母表达质粒,并获得酵母表达菌株,经诱导后四联DV EDIII蛋白获得高效表达。通过Western blot、ELISA检测及蛋白质免疫原性鉴定,结果表明登革病毒四联DV EDIII蛋白表达质粒构建成功,重组蛋白在毕赤酵母获得高效表达,免疫小鼠后能够介导产生较高水平的血清效价。这表明已获得了能引起有效免疫反应的四型登革病毒EDIII蛋白,为登革病毒疫苗的研究提供了良好的基础。

关键词: 疫苗登革病毒重组蛋白包膜EDIII蛋白    
Abstract:

Four serotypes of dengue virus (DENV1-4) circulate globally, causing more human illness than any other arthropod-borne virus. So far, licensed vaccine against dengue is not yet available. The greatest risk factor for severe dengue is a previous infection with a different DENV serotype. The theory for why sequential heterotypic infections increases risk of severe disease is "antibody- dependent enhancement" (ADE). Previous research determinants that the predominant immune response is against the E protein which is comprised of three structurally distinct domains (DI, DII, DIII). EDIII might exclusively generate potent neutralizing antibodies with little or no cross-reactivity, and therefore of reduced ability to promote ADE. This suggested that EDIII is more likely to be an attractive vaccine. Here, a tetravalent recombinant dengue domain III protein gene sequence were yeast expression optimized and synthesized, then expression plasmids were constructed and transducted into pichia pastoris to selected an high-efficiency expression strain. EDIII protein were obtained by inducing expression and purification followed by identification using SDS-PAGE, Western blot. The result showed that EDIII expression plasmid was successfully constructed and highly expressed in pichia pastoris. Mice immunized with tetravalent DENV DIII generated higher levels of serum titer. In conclusion, a tetravalent recombinant dengue domain III protein with high purity were obtained. It lays a good foundation for the development of dengue vaccine.

Key words: Envelope domain III protein    Recombinant protein    Dengue virus    Vaccine
收稿日期: 2015-08-24 出版日期: 2016-01-11
ZTFLH:  Q939  
基金资助:

国家"十二五"重大新药创制科技重大专项 (2012ZX09104-302),国家自然科学基金面上项目( 81171946),云南省科技厅社会发展科技计划(2011CA016),云南省自然科学基金(2009ZC187M,2012FB188)资助项目

通讯作者: 孙强明     E-mail: qsun@imbcams.com.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
邱丽娟
赵玉娇
李多
黄新伟
王晓丹
席珏敏
潘玥
陈俊英
孙强明

引用本文:

邱丽娟, 赵玉娇, 李多, 黄新伟, 王晓丹, 席珏敏, 潘玥, 陈俊英, 孙强明. 登革病毒四型联合重组包膜蛋白III区的表达和免疫原性鉴定[J]. 中国生物工程杂志, 2016, 36(1): 1-6.

QIU Li-juan, ZHAO Yu-jiao, LI Duo, HUANG Xin-wei, WANG Xiao-dan, XI Jue-min, PAN Yue, CHEN Jun-ying, SUN Qiang-ming. Expression and Immunological Analysis of Recombinant Tetravalent Envelope Domain III Protein of Dengue Virus. China Biotechnology, 2016, 36(1): 1-6.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20160101        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I1/1

[1] Rodriguez-Roche R 1, Gould E A.Understanding the dengue viruses and progress towards their control.BioMed Research International, 2013,13(4): 119-144.
[2] Gubler D J.The global emergence/resurgence of arboviral diseases as public health problems.Archives of Medical Research, 2002,33( 4): 330-342.
[3] Domingo C, Alves M J, de Ory F.International external quality control assessment for the serological diagnosis of dengue infections. BMC Infectious Diseases, 2015, (15):167.
[4] Guzman M G, Kouri G.Dengue: an update.Lancet Infect Dis, 2002, 2(1): 33-42.
[5] Bhatt S, Gething P W, Brady O J.The global distribution and burden of dengue.Nature, 2013, 496(7446): 504-507.
[6] McArthur M A, Sztein M B, Edelman R.Dengue vaccines: recent developments, ongoing challenges and current candidates.Expert Rev Vaccines, 2013, 12(8): 933-953.
[7] Lindenbach B D, Rice C M.Molecular biology of flaviviruses.Adv Virus Res, 2003, 59:23-61.
[8] Simmons C P, Farrar J J, Nguyen V V, et al.Dengue.N Engl J Med, 2012,366(15): 399-401.
[9] Halstead S B.Neutralization and antibody-dependent enhancement of dengue viruses.Adv Virus, 2003, 60(60):421-467.
[10] Dejnirattisai W, Jumnainsong A, Onsirisakul N, et al.Cross-reacting antibodies enhance dengue virus infection in humans.Science, 2010,328(5979): 745.
[11] Block K, Bodrigo W W, Quinn M, et al.A tetravalent recombinant dengue domain III protein vaccine stimulates neutralizing and enhancing antibodies in mice.Vaccine, 2010,28(51):8085-8094.
[12] Zhang F C, Zhao H, Li L H, et al. Severe dengue outbreak in Yunnan China, Int J Infect Dis, 2013, 2014(27):4-6.
[13] Shen J C, Luo L, Li L.The impacts of mosquito density and meteorological factors on dengue fever epidemics in Guangzhou China 2006-2014: a time-series analysis.Biomed Environ Sci, 2015; 28(5): 321-329.
[14] Chen B, Liu Q.Dengue fever in China.Lancet, 2015 385(9978): 1621-1622.
[15] Guzman M G, Eva H.Dengue.Lancet, 2015,385(9966): 453-465.
[16] Sariol C A, White L J.Utility, limitations, and future of non-human primates for dengue research and vaccine development.Front Immunol, 2014,5(5):452.

[1] 肖云喜,张俊河,杨雯雯,程洪伟. 用于疫苗生产的人二倍体细胞研究进展*[J]. 中国生物工程杂志, 2021, 41(11): 74-81.
[2] 朱潇静,王芮,张欣欣,靳家鑫,路闻龙,丁大顺,霍翠梅,李青梅,孙爱军,庄国庆. 利用细菌人工染色体技术构建整合F基因的重组MDV疫苗株*[J]. 中国生物工程杂志, 2021, 41(10): 33-41.
[3] 程旭,杨雨睛,吴赛男,侯勤龙,李咏梅,韩慧明. 金黄色葡萄球菌SarAIcaA及其融合基因的DNA疫苗构建及在小鼠免疫应答中的初步研究 *[J]. 中国生物工程杂志, 2020, 40(7): 41-50.
[4] 刘珍珍,田大勇. 狂犬病疫苗蔗糖密度梯度离心纯化工艺开发 *[J]. 中国生物工程杂志, 2020, 40(4): 25-33.
[5] 钱颖,钱晨,白晓庆,王晶晶. 免疫佐剂在肿瘤免疫疗法中的应用进展 *[J]. 中国生物工程杂志, 2020, 40(3): 96-103.
[6] 谢华玲,吕璐成,杨艳萍. 全球冠状病毒疫苗专利分析[J]. 中国生物工程杂志, 2020, 40(1-2): 57-64.
[7] 井汇源,段二珍,董望. 体外转录的自我复制型mRNA疫苗研究进展*[J]. 中国生物工程杂志, 2020, 40(12): 25-30.
[8] 廖小艳,陈丽丽. COVID-19疫苗研究现状*[J]. 中国生物工程杂志, 2020, 40(12): 8-17.
[9] 冯雪娇,侯海龙,喻琼,王俊姝. 我国宫颈癌疫苗市场分析及对策研究*[J]. 中国生物工程杂志, 2020, 40(11): 96-101.
[10] 高彦,杜晶晶,王斌,刘琦,申志强. 气相色谱法对狂犬病疫苗灭活工艺中β-丙内酯研究[J]. 中国生物工程杂志, 2019, 39(6): 25-31.
[11] 杨琳,傅哲彦,吕正兵,舒建洪. 免疫佐剂分类及作用机制[J]. 中国生物工程杂志, 2019, 39(5): 114-119.
[12] 许嘉越,李紫倩,张革. 登革病毒3'UTRΔ30系列疫苗的研究进展[J]. 中国生物工程杂志, 2019, 39(3): 97-104.
[13] 蒋析文,董子维,刘悦,朱小亚. 生物标记物与精准医疗研究进展[J]. 中国生物工程杂志, 2019, 39(2): 74-81.
[14] 孙思,邱喻兰,颜菊荣,杨静,吴光英,王玲,胥文春. 重组质粒pcDNA3-dnaJ/蛋白DnaJ异源免疫诱导Th1和Th17细胞免疫应答抵抗肺炎链球菌感染 *[J]. 中国生物工程杂志, 2019, 39(12): 9-17.
[15] 郭乐,王淑娥,何萌,张帆,刘宏鹏,刘昆梅. 幽门螺杆菌多价表位疫苗CWAE的表达及其免疫学性质的研究 *[J]. 中国生物工程杂志, 2019, 39(12): 1-8.