Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2015, Vol. 35 Issue (12): 84-88    DOI: 10.13523/j.cb.20151213
综述     
直接重编程用于心脏再生治疗的研究进展
郝问1, 缪黄泰1, 师树田1, 聂绍平1,2
1. 首都医科大学附属北京安贞医院急诊危重症中心 北京 100029;
2. 北京市心肺血管疾病研究所 北京 100029
The Research Progress of Direct Reprogramming for Cardiac Regeneration
HAO Wen1, MIAO Huang-tai1, SHI Shu-tian1, NIE Shao-ping1,2
1. Emergency and Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China;
2. Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
 全文: PDF  HTML
摘要:

心脏再生治疗有望改变现有的心血管病治疗局面,直接重编程领域的研究为实现这一目标提供了新的有力工具。直接重编程是近年来广泛应用于细胞修复及器官移植研究的一项技术,可绕过诱导多功能干细胞中间阶段,直接将一种终末分化细胞转化为其他种类的终末分化细胞。总结了直接重编程用于心脏再生治疗的研究进展,探讨直接重编程技术尚存的问题和障碍,并展望其未来在再生医学领域的应用。

关键词: 直接重编程再生心肌细胞修复    
Abstract:

Cardiac regeneration is expected to change the existing treatment situation of cardiovascular disease.Research in the field of direct reprogramming provides a new powerful tool to achieve this goal.Direct reprogramming is widely used for studies on cell repair and organ transplantation recent years,which can by pass the middle stage of induced pluripotent stem cells,change one terminallydifferentiated cell type directly into another.The developments of direct reprogramming in the heart repair were summarized, the controversies and obstacles that challenge the field were pointed out, and the applications of this technology in the field of cardiovascular regenerative medicine in the future were explored.

Key words: Cardiomyocytes    Direct reprogramming    Regeneration    Repairation
收稿日期: 2015-07-20 出版日期: 2015-12-22
ZTFLH:  R541  
基金资助:

国家高技术研究发展计划(2015AA020102)、国家自然科学基金(81270284)、北京市自然科学基金(7141003)资助项目

通讯作者: 聂绍平     E-mail: spnie@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
郝问
缪黄泰
师树田
聂绍平

引用本文:

郝问, 缪黄泰, 师树田, 聂绍平. 直接重编程用于心脏再生治疗的研究进展[J]. 中国生物工程杂志, 2015, 35(12): 84-88.

HAO Wen, MIAO Huang-tai, SHI Shu-tian, NIE Shao-ping. The Research Progress of Direct Reprogramming for Cardiac Regeneration. China Biotechnology, 2015, 35(12): 84-88.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20151213        https://manu60.magtech.com.cn/biotech/CN/Y2015/V35/I12/84

[1] Go A S, Mozaffarian D, Roger V L,et al.Heart disease and stroke statistics-2014 update:a report from the American Heart Association.Circulation, 2014, 129(3):e28-e292.
[2] Dilley R J, Morrison W A.Vascularisation to improve translational potential of tissue engineering systems for cardiac repair.Int J Biochem Cell Biol, 2014, 56:38-46.
[3] Jaenisch R, Young R.Stem cells,the molecular circuitry of pluripotency and nuclear reprogramming.Cell, 2008, 132(4):567-582.
[4] Polo J M, Liu S, Figueroa M E, et al.Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells.Nat Biotechnol, 2010, 28(8):848-855.
[5] Muraoka N, Yamakawa H, Miyamoto K, et al.MiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures.EMBO J, 2014, 33(14):1565-1581.
[6] Pfisterer U, Kirkeby A, Torper O, et al.Direct conversion of human fibroblasts to dopaminergic neurons.Proc Natl Acad Sci U S A, 2011, 108(25):10343-10348.
[7] Davis R L, Weintraub H, Lassar A B.Expression of a single transfected cDNA converts fibroblasts to myoblasts.Cell, 1987, 51(6):987-1000.
[8] Blau H M, Pavlath G K, Hardeman E C, et al.Plasticity of the differentiated state.Science, 1985, 230(4727):758-766.
[9] Vierbuchen T, Ostermeier A, Pang Z P, et al.Direct conversion of fibroblasts to functional neurons by defined factors.Nature, 2010, 463(7284):1035-1041.
[10] Kelly M C, Chang Q, Pan A, et al.Atoh1 directs the formation of sensory mosaics and induces cell proliferation in the postnatal mammalian cochlea in vivo.J Neurosci, 2012, 32(19):6699-6710.
[11] Liu Z, Dearman J A, Cox B C, et al.Age-dependent in vivo conversion of mouse cochlear pillar and Deiters' cells to immature hair cells by Atoh1 ectopic expression.J Neurosci, 2012, 32(19):6600-6610.
[12] Buganim Y, Itskovich E, Hu Y C, et al.Direct reprogramming of fibroblasts into embryonic sertoli-like cells by defined factors.Cell Stem Cell, 2012, 11(3):373-386.
[13] Takahashi K, Yamanaka S.Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.Cell, 2006, 126(4):663-676.
[14] Ieda M, Fu J D, Delgado-Olguin P, et al.Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors.Cell, 2010, 142(3):375-386.
[15] Song K, Nam Y J, Luo X, et al.Heart repair by reprogramming non-myocytes with cardiac transcription factors.Nature, 2012, 485(7400):599-604.
[16] Protze S, Khattak S, Poulet C, et al.A new approach to transcription factor screening for reprogramming of fibroblasts to cardiomyocyte-like cells.J Mol Cell Cardiol, 2012, 53(3):323-332.
[17] Chen J X, Krane M, Deutsh M A, et al.Inefficient reprogramming of fibroblasts into cardiomyocytes using Gata4,Mef2c,and Tbx.Circ Res, 2012, 111(1):50-55.
[18] Inagawa K, Ieda M.Direct reprogramming of mouse fibroblasts into cardiac myocytes.J Cardiovasc Transl Res, 2013, 6(1):37-45.
[19] Jayawardena T M, Egemnazarov B, Finch E A, et al.MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes.Circ Res, 2012, 110(11):1465-1473.
[20] Muraoka N, Yamakawa H, Miyamoto K, et al.MiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures.EMBO J, 2014, 33(14):1565-1581.
[21] Wang H, Cao N, Spencer C I, et al.Small molecules enable cardiac eprogramming of mouse fibroblasts with a single factor,Oct4.Cell Rep, 2014, 6(5):951-960.
[22] Ifkovits J L, Addis R C, Epstein J A, et al.Inhibition of TGFβ signaling increases direct conversion of fibroblasts to induced cardiomyocytes.PloS One, 2014, 9(2):e89678.
[23] Russell C Addis, Jonathan A Epstein.Induced regeneration-the progress and promise of direct reprogramming for heart repair.Nat Med, 2013, 19(7):829-836.
[24] Qian L, Huang Y, Spencer C I, et al.In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes.Nature, 2012, 485(7400):593-598.
[25] Fu J D, Stone N R, Liu L, et al.Direct reprogramming of human fibroblasts toward a cardiomyocyte-like state.Stem Cell Reports, 2013, 1(3):235-247.
[26] Islas J F, Liu Y, Weng K C, et al.Transcription factors ETS2 and MESP1 transdifferentiate human dermal fibroblasts into cardiac progenitors.Proc Natl Acad Sci USA, 2012, 109(32):13016-13021.
[27] Nam Y J, Song K, Luo X, et al.Reprogramming of human fibroblasts toward a cardiac fate.Proc Natl Acad Sci U S A, 2013, 110(14):5588-5593.
[28] Wada R, Muraoka N, Inagawa K, et al.Induction of human cardiomyocyte-like cells from fibroblasts by defined factors.Proc Natl Acad Sci U S A, 2013, 110(31):12667-12672.
[29] Yamakawa H, Ieda M.Strategies for heart regeneration approaches ranging from induced pluripotent stem cells to direct cardiac reprogramming.Int Heart J, 2015, 56(1):1-5.
[30] Kattman S J, Koonce C H, Walison B J, et al.Stem cells and their derivatives:A renaisance in cardiovaseular translational research.J Cardiovase Tranal Res, 2011, 4(1):66-72.
[31] Xie M, Cao N, Ding S.Small molecules for cell reprogramming and heart repair:Progress and perspective.ACS Chem Biol, 2014, 9(1):34-44.
[32] Nam Y J, Lubczyk C, Bhakta M, et al.Induction of diverse cardiac cell types by reprogramming fibroblasts with cardiac transcription factors.Development, 2014, 141(22):4267-4278.

[1] 常璐, 黄娇芳, 董浩, 周斌辉, 朱小娟, 庄英萍. 合成生物学改造微生物及生物被膜用于重金属污染检测与修复 *[J]. 中国生物工程杂志, 2021, 41(1): 62-71.
[2] 戴奇男,张景红. 肿瘤多药耐药与自噬、DNA修复和肿瘤干细胞相关的分子机制研究进展 *[J]. 中国生物工程杂志, 2020, 40(4): 69-77.
[3] 苑亚坤,刘广洋,刘拥军,谢亚芳,吴昊. 间充质干细胞基础研究与临床转化的中美比较[J]. 中国生物工程杂志, 2020, 40(4): 97-107.
[4] 李玉,张晓. 日本细胞治疗监管双轨制的经验及启示 *[J]. 中国生物工程杂志, 2020, 40(1-2): 174-179.
[5] 陈利军,屈晶晶,项春生. 间充质干细胞在2019新型冠状病毒肺炎(COVID-19)中的治疗潜能、临床研究与应用前景*[J]. 中国生物工程杂志, 2020, 40(11): 43-55.
[6] 刘子儒,张甜. 聚多巴胺改性聚合物在神经修复中的研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 57-64.
[7] 武慧蓉,温朝辉. 壳聚糖在神经组织工程中的应用 *[J]. 中国生物工程杂志, 2019, 39(6): 73-77.
[8] 刘叶,潘玥,郑魏,胡晶. miR-186-5p在酒精诱导的心肌细胞中高表达并通过靶基因XIAP调控细胞凋亡水平 *[J]. 中国生物工程杂志, 2019, 39(5): 53-62.
[9] 李检秀,陈先锐,陈小玲,黄艳燕,莫棋文,谢能中,黄日波. 应用合成生物学策略构建全细胞生物催化剂合成(S)-乙偶姻 *[J]. 中国生物工程杂志, 2019, 39(4): 60-68.
[10] 刘璐,殷亮,黄飞,张勇,刘倩,冯雁. 利用SpyTag/SpyCatcher构建胞内自组装多酶复合体实现高效生物合成 *[J]. 中国生物工程杂志, 2018, 38(7): 75-82.
[11] 刘亚楠,路莉,王学习,吴勇杰,刘霞. 脂肪干细胞对神经创伤修复的研究进展*[J]. 中国生物工程杂志, 2018, 38(3): 70-75.
[12] 张慧楠,李萌萌,文静,吴书祎,兰世建,罗忠礼. 自组装短肽R2I4R2对皮肤创伤快速修复过程的研究[J]. 中国生物工程杂志, 2018, 38(2): 7-12.
[13] 何官榕,何碧珠,吴沙沙,石京山,陈集双,兰思仁. 多叶斑叶兰繁殖体系建立及基于转录组的发育调控途径功能基因研究[J]. 中国生物工程杂志, 2018, 38(12): 57-64.
[14] 赵许朋,赵晓朋,施豪,陈学梅,姜婷,刘燕. ‘贵长’猕猴桃叶片高效直接再生体系的建立 *[J]. 中国生物工程杂志, 2018, 38(10): 48-54.
[15] 安婷,季静,王昱蓉,马志刚,王罡,李倩,杨丹,张松皓. 百合鳞片的诱导分化及遗传转化效率分析[J]. 中国生物工程杂志, 2018, 38(1): 25-31.