Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2015, Vol. 35 Issue (11): 7-12    DOI: 10.13523/j.cb.20151102
研究报告     
羟基化修饰对大鼠胶原热稳定性的影响研究
焦昀1,2, 孔英俊2, 高建萍2, 康跻耀2, 孙坤1,2, 査圣华2, 张贵锋2, 王明林1
1. 山东农业大学食品科学与工程学院 泰安 271000;
2. 中国科学院过程工程研究所生化工程国家重点实验室 北京 100190
The Effect of Hydroxylation on the Thermal Stability of Rat Collagen
JIAO Yun1,2, KONG Ying-jun2, GAO Jian-ping2, KANG Ji-yao2, SUN Kun1,2, ZHA Sheng-hua2, ZHANG Gui-feng2, WANG Ming-lin1
1. College of Food Science, Shandong Agricultural University, Taian 271000, China;
2. Institute of Process Engineering, Chinese Academy of Sciences, National Key Laboratory of Biochemical Engineering, Beijing 100190, China
 全文: PDF(520 KB)   HTML
摘要:

采用差示扫描量热仪(DSC)研究羟脯氨酸(Hyp)含量对胶原热稳定性的影响。以不同周龄BN大鼠皮肤为原料制备了胶原,分析制备胶原中Hyp的含量;采用DSC测定不同Hyp含量胶原的临界变性温度及焓变;采用圆二色光谱(CD)检测提取胶原的二级结构。结果表明,提取胶原在41.3℃发生三螺旋解聚,CD光谱分析结果表明,当样品经临界变性温度处理后,部分三螺旋结构转化为无规则线圈结构。胶原变性过程中所需热量与羟脯氨酸含量呈正相关,实验建立了胶原热变性过程中焓变与Hyp含量的关系。该研究表明胶原中脯氨酸羟基化修饰是影响胶原热稳定性的关键因素。

关键词: 胶原圆二色光谱羟基化修饰热稳定性差示扫描量热仪    
Abstract:

The effect of proline hydroxylation on the thermal stability of collagen was investigated. Skin collagen from BN rats with different weeks were separated and purified. The hydroxyproline (Hyp) content in these collagen were analyzed. The influence of hydroxyproline content on the denaturation process of collagen were investigated using the differential scanning calorimeter (DSC) and the circular dichroism (CD) spectroscopy. The CD spectra indicated that collagen obtained from rat skin had the secondary structure typical for collagen. The helix content decreased when denatured by heat treatment. The denaturation temperature and molar enthalpy change was determined using DSC. The results show that the triple-helix become disordered at 41.3℃(Tm). The molar enthalpy change increased with quantity of hydroxylation of proline. CD spectrum manifested that part of the triple-helix changed into random coil structure when the denaturation temperature was higher than 41.3℃. The result indicates that the hydroxylation of proline modification is the key factor affecting on the structure of collagen during denaturation process.

Key words: Hydroxyl modification    DSC    Collagen    Thermal stability    CD
收稿日期: 2015-03-23 出版日期: 2015-11-24
ZTFLH:  Q819  
通讯作者: 张贵锋, 王明林     E-mail: gfzhang@ipe.ac.cn;mlwang@sdau.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
焦昀
孔英俊
高建萍
康跻耀
孙坤
査圣华
张贵锋
王明林

引用本文:

焦昀, 孔英俊, 高建萍, 康跻耀, 孙坤, 査圣华, 张贵锋, 王明林. 羟基化修饰对大鼠胶原热稳定性的影响研究[J]. 中国生物工程杂志, 2015, 35(11): 7-12.

JIAO Yun, KONG Ying-jun, GAO Jian-ping, KANG Ji-yao, SUN Kun, ZHA Sheng-hua, ZHANG Gui-feng, WANG Ming-lin. The Effect of Hydroxylation on the Thermal Stability of Rat Collagen. China Biotechnology, 2015, 35(11): 7-12.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20151102        https://manu60.magtech.com.cn/biotech/CN/Y2015/V35/I11/7

[1] Schweizer S, Bick A, Subramanian L, et al. Influences on the stability of collagen triple-helix. Fluid Phase Equilibria, 2014, 362: 113-117.
[2] Lin Y K, Kuan C Y. Development of 4-hydroxyproline analysis kit and its application to collagen quantification. Food Chemistry, 2010, 119(3): 1271-1277.
[3] Mu C D, Li D F, Lin W, et al. Temperature induced denaturation of collagen in acidic solution. Biopolymers, 2007, 86(4): 282-287.
[4] Hofman K, Hall B, Cleaver H, et al. High-throughput quantification of hydroxyproline for determination of collagen. Analytical Biochemistry, 2011, 417(2): 289-291.
[5] Marzec E, Pietrucha K. The effect of different methods of cross-linking of collagen on its dielectric properties. Biophysical Chemistry, 2008, 132(2-3): 89-96.
[6] Pon-on W, Charoenphandhu N, Teerapornpuntakit J, et al. Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)-bioglass/chitosan-collagen composite scaffolds: a bone tissue engineering applications. Materials Science and Engineering C, 2014, 38(9): 63-72.
[7] Selvam S, Usha R, Kalarical J, et al. Enhancing collagen stability through nanostructures containing chromium(III)oxide. Colloids and Surfaces B: Biointerfaces, 2012, 100: 36-41.
[8] Usha R, Rajaram A, Ramasami T. Stability of collagen in the presence of 3,4-dihydroxyphenylalanine (DOPA). Journal of Photochemistry and Photobiology B, Biology, 2009, 9(7): 34-39.
[9] Colgrave M L, Allingham P G, Jones A. Hydroxyproline quantification for the estimation of collagen in tissue using multiple reaction monitoring mass spectrometry. Journal of Chromatography A, 2008, 1212(1-2): 150-153.
[10] He L R, Mu C D, Li D F, et al. Revisit the pre-transition of type I collagen denaturation in dilute solution by ultrasensitive differential scanning calorimetry. Thermochimica Acta, 2012, 548: 1-5.
[11] He C L, Tang Z H, Tian H Y, et al. Progress in the development of biomedical polymer materials fabricated by 3-dimensional printing technology. Acta Polymerica Sinica, 2013, 13(6): 722-732.
[12] John A M, Naina K, Barbara B. Gly-X-Y tripetide frequencies in collagen: a context for host-guest triple-helical peptide. Structure Biology, 1998, 122(1-2): 86-91.
[13] Rieppo J, Hyttinen M M, Halmesmaki E, et al. Changes in spatial collagen content and collagen network architecture in porcine articular cartilage during growth and maturation. Osteoarthritis and Cartilage, 2008, 17(4): 448-455.
[14] Gu Q S, Tian K. Collagen in tissue engineering and clinical application. Shanghai Biomedical Engineering, 1999, 6: 35-38.
[15] Gu Q S, Hou C L. Natural biodegradable sex research progress of biomedical materials. Shanghai Biomedical Engineering, 1999, 6: 39-40.
[16] 杨太美. 胶原与创面愈合.国际骨科学杂志,1994, 2:72-76. Yang T M. Collagen and wound healing. International Journal of Orthopaedics, 1994, 2: 72-76.
[17] Liu W T, Li G Y. Non-isothermal kinetic analysis of the thermal denaturation of type I collagen in solution using isoconversional and multivariate non-linear regression methods. Polymer Degradation and Stability, 2010, 95: 2233-2240.
[18] Li Y, Li Y W, Du Z L, et al. Comparison of dynamic denaturation temperature of collagen with its static denaturation temperature and the configuration characteristics in collagen denaturation processes. Thermochimica Acta, 2008, 469(1-2): 71-76.
[19] Wang J, Zhang X Y, Teng Y K, et al. Determination of the content of amino acid by pre-column derivatization and RP-HPLC. Journal of Shenyang Pharmaceutical University, 2003, 20(6):428-430.
[20] Kandamchira A, Selvam S, Marimuthu N, et al. Influence of functionalized nanoparticles on conformational stability. Materials Science and Engineering, 2013, 33(8): 4985-4988.
[21] Wu L W, Liu W T, Li G Y. Preparation and characterization of undenatured collagen from porket skin. China Leather, 2013,7(42):26-29.
[1] 陈中伟,郑璞,陈鹏程,吴丹. 耐热植酸酶突变体的筛选及性质研究 *[J]. 中国生物工程杂志, 2021, 41(2/3): 30-37.
[2] 明玥,赵自通,王鸿磊,梁志宏. 基于序列和结构分析的酶热稳定性改造策略*[J]. 中国生物工程杂志, 2021, 41(10): 100-108.
[3] 赵晓艳,陈允妲,章雅倩,吴晓玉,王飞,陈金印. Myxococcus sp.V11海藻糖合酶TreS II分子改造 *[J]. 中国生物工程杂志, 2020, 40(3): 79-87.
[4] 刘延娟, 李旭娟, 袁航, 刘娴, 高艳秀, 龚明, 邹竹荣. 融合酰基载体蛋白可增强大肠杆菌重组蛋白的可溶性和热稳定性[J]. 中国生物工程杂志, 2017, 37(7): 115-123.
[5] 郭超, 王志彦, 甘一如, 李丹, 邓勇, 于浩然, 黄鹤. 技术与方法理性设计改造牛肠激酶的热稳定性[J]. 中国生物工程杂志, 2016, 36(8): 46-54.
[6] 王小花, 李玉婷, 刘亚威, 桂金秋, 周晓杭, 袁晓环, 初彦辉, 刘海峰. 突变型人HGF(tvNK1)对CCl4诱导的大鼠肝纤维化的影响[J]. 中国生物工程杂志, 2016, 36(6): 18-23.
[7] 郭玮婷, 张慧, 查东风, 黄汉峰, 黄静, 高红亮, 常忠义, 金明飞, 鲁伟. 产耐高温谷氨酰胺转胺酶菌株的快速筛选方法[J]. 中国生物工程杂志, 2015, 35(8): 83-89.
[8] 张西轩, 李晔, 王亚航, 杜康龙, 张真, 阮海华. 蜡样芽孢杆菌ColR75E胶原酶的表达、纯化及酶学性质研究[J]. 中国生物工程杂志, 2015, 35(10): 44-52.
[9] 徐小静, 安会灵, 陈宁美, 杨婧, 周宜君. 盐芥ThMSD基因在大肠杆菌中的表达及特性研究[J]. 中国生物工程杂志, 2013, 33(4): 74-79.
[10] 罗二梅, 宇丽, 张家文, 柳菁. 还原型谷胱甘肽对人脐带间充质干细胞成软骨诱导的影响[J]. 中国生物工程杂志, 2013, 33(3): 1-8.
[11] 邓辉, 陈晟, 陈坚, 吴敬. T26P和A30P位点突变对Thermobifida fusca葡萄糖异构酶热稳定性及活性的影响[J]. 中国生物工程杂志, 2013, 33(10): 67-72.
[12] 张永明, 崔智峰, 平泽荣次, 吴海霞, 李国龙. 燕麦幼苗单胺氧化酶的热稳定性及催化特性研究[J]. 中国生物工程杂志, 2012, 32(07): 107-112.
[13] 王跃军,高强,孙谧,郝建华,王海英. 超嗜热羧酸酯酶的性质和应用研究[J]. 中国生物工程杂志, 2008, 28(3): 118-122.
[14] 吴凤麟,宇丽. 碱性成纤维细胞生长因子与胶原对组织工程软骨体外构建的影响[J]. 中国生物工程杂志, 2007, 27(7): 45-49.
[15] 崔琳,张贵锋,刘涛,闭静秀,马润宇,苏志国. 液相色谱/质谱联用法分析不同年龄鼠皮肤中I型、III型胶原蛋白相对含量[J]. 中国生物工程杂志, 2007, 27(4): 71-76.