Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2015, Vol. 35 Issue (5): 109-118    DOI: 10.13523/j.cb.20150516
综述     
氢化酶重组表达研究进展
丁一1,3, 吴海英1,2, 史吉平1,2, 孙俊松1,2
1. 中国科学院上海高等研究院生物炼制实验室 上海 201210;
2. 上海科技大学生命科学学院 上海 201210;
3. 中国科学院大学 北京 100049
Current Progress in Recombinant Systems for Expression of Hydrogenases
DING Yi1,3, WU Hai-ying1,2, SHI Ji-ping1,2, SUN Jun-song1,2
1. Biorefinery Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China;
2. School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China;
3. University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(474 KB)   HTML
摘要:

氢化酶催化最简单的氧化还原反应,但蛋白结构却非常复杂,对其蛋白结构和催化功能的研究牵动着生物制氢、光电产氢催化剂及氢能源电池等相关绿色能源产业的发展。氢化酶通常可逆地催化质子还原产氢的反应,对氧化还原电位非常敏感,催化活性中心易于被氧化失活,活性蛋白的分离提纯十分不易,使得对其催化机制的认识推进缓慢。为了获取更多的氢化酶活性蛋白,许多研究团队先后对氢化酶开展了大量的同源或异源重组表达研究,就这类研究工作进行了扼要的总结和分析。

关键词: 氢化酶重组表达成熟因子翻译修饰    
Abstract:

Hydrogenase enzymes, which catalyze the formation and dissociation of hydrogen are heteromeric metalloenzymes. Mature hydrogenases are usually highly sensitive to oxygen,and the pro-enzymes are not active unless they are modified by a complicated post-transltational maturation process which involves synergized work on catalytic center of the enzymes by related chaprons. Catalytic mechanisms of hydrogenases also plays pivotal role in development of valuable oxygen-resistant biocatalysts for bio-hydrogen production and synthetic hydrogenase mimics applied in green battery industry. Recombinant enzymes are therefore indispensable for enzymes' structural studies, since acquisition of native enzymes is extremely difficult, and, in some case impossible. This review aims to summarize and analyze recent progress in studies using native or foreign hosts to achive successful expression of recombinant enzymes that are either iron only or NiFe containing. Furthermore, the enzymatic features were systematically compared between native and recombinant proteins, and the likely solutions for future works in this area were also proposed.

Key words: Hydrogenase    Recombinant expression    Maturation factor    Post-translational modification
收稿日期: 2015-02-03 出版日期: 2015-05-25
ZTFLH:  Q786  
通讯作者: 孙俊松     E-mail: sunjs@sari.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

丁一, 吴海英, 史吉平, 孙俊松. 氢化酶重组表达研究进展[J]. 中国生物工程杂志, 2015, 35(5): 109-118.

DING Yi, WU Hai-ying, SHI Ji-ping, SUN Jun-song. Current Progress in Recombinant Systems for Expression of Hydrogenases. China Biotechnology, 2015, 35(5): 109-118.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20150516        https://manu60.magtech.com.cn/biotech/CN/Y2015/V35/I5/109


[1] Ihara M, Nakamoto H, Kamachi T, et al. Photoinduced hydrogen production by direct electron transfer from photosystem I cross-linked with cytochrome c(3) to NiFe -hydrogenase. Photochemistry and Photobiology, 2006, 82(6): 1677-1685.

[2] Stephenson M, Stickland L H. Hydrogenase: A bacterial enzyme activating molecular hydrogen. I. The properties of the enzyme. Biochemical Journal, 1931, 25(1): 205-214.

[3] Mortenson L E, Carnahan J E, Valentine R C. An electron transport factor from clostridium pasteurianum. Biochemical and Biophysical Research Communications, 1962, 7(6): 448-452.

[4] Vignais P M, Billoud B. Occurrence, classification, and biological function of hydrogenases: an overview. Chemical Reviews, 2007, 107(10): 4206-4272.

[5] Yagi T, Higuchi Y. Studies on hydrogenase. Proceedings of the Japan Academy, Series B, 2013, 89(1): 16-33.

[6] Paul C E, Arends I, Hollmann F. Is simpler Better? Synthetic nicotinamide cofactor analogues for redox chemistry. Acs Catalysis, 2014, 4(3): 788-797.

[7] Rollin J A, Tam T K, Zhang Y H P. New biotechnology paradigm: cell-free biosystems for biomanufacturing. Green Chemistry, 2013, 15(7): 1708-1719.

[8] Zirngibl C, Vandongen W, Schworer B, et al. H-2-forming methylenetetrahydromethanopterin dehydrogenase, a novel type of hydrogenase without iron-sulfur clusters in methanogenic archaea. European Journal of Biochemistry, 1992, 208(2): 511-520.

[9] Thauer R K. Biochemistry of methanogenesis: a tribute to Marjory Stephenson. Microbiology-Uk, 1998, 144: 2377-2406.

[10] Thauer R K, Klein A R, Hartmann G C. Reactions with molecular hydrogen in microorganisms: evidence for a purely organic hydrogenation catalyst. Chemical Reviews, 1996, 96(7): 3031-3042.

[11] Korbas M, Vogt S, Meyer-Klaucke W, et al. The iron-sulfur cluster-free hydrogenase (Hmd) is a metalloenzyme with a novel iron binding motif. Journal of Biological Chemistry, 2006, 281(41): 30804-30813.

[12] Shima S, Lyon E J, Sordel-Klippert M S, et al. The cofactor of the iron-sulfur cluster free hydrogenase Hmd: Structure of the light-inactivation product. Angewandte Chemie-International Edition, 2004, 43(19): 2547-2551.

[13] Friedrich B, Fritsch J, Lenz O. Oxygen-tolerant hydrogenases in hydrogen-based technologies. Current Opinion in Biotechnology, 2011, 22(3): 358-364.

[14] Nicolet Y, Cavazza C, Fontecilla-Camps J C. Fe-only hydrogenases: structure, function and evolution. Journal of Inorganic Biochemistry, 2002, 91(1): 1-8.

[15] Peters J W. Structure and mechanism of iron-only hydrogenases. Current Opinion in Structural Biology, 1999, 9(6): 670-676.

[16] Vignais P M, Billoud B, Meyer J. Classification and phylogeny of hydrogenases. Fems Microbiology Reviews, 2001, 25(4): 455-501.

[17] Nicolet Y, Piras C, Legrand P, et al. Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center. Structure with Folding & Design, 1999, 7(1): 13-23.

[18] Peters J W, Lanzilotta W N, Lemon B J, et al. X-ray crystal structure of the Fe-only hydrogenase (Cpl) from Clostridium pasteurianum to 1.8 angstrom resolution. Science, 1998, 282(5395): 1853-1858.

[19] Cohen J, Kim K, King P, et al. Finding gas diffusion pathways in proteins: application to O-2 and H-2 transport in Cpl FeFe -hydrogenase and the role of packing defects. Structure, 2005, 13(9): 1321-1329.

[20] Frey M. Hydrogenases: Hydrogen-activating enzymes. Chembiochem, 2002, 3(2-3): 153-160.

[21] Kim J Y H, Cha H J. Recent progress in hydrogenase and its biotechnological application for viable hydrogen technology. Korean Journal of Chemical Engineering, 2013, 30(1): 1-10.

[22] Pierik A J, Roseboom W, Happe R P, et al. Carbon monoxide and cyanide as intrinsic ligands to iron in the active site of NiFe -hydrogenases - NiFe(CN)2CO, biology's way to activate H2. Journal of Biological Chemistry, 1999, 274(6): 3331-3337.

[23] Fontecilla-Camps J C, Frey M, Garcin E, et al. Hydrogenase: A hydrogen-metabolizing enzyme. What do the crystal structures tell us about its mode of action? Biochimie, 1997, 79(11): 661-666.

[24] Volbeda A, Charon M H, Piras C, et al. Crystal-structure of the nickel-iron hydrogenase from desulfovibrio-gigas. Nature, 1995, 373(6515): 580-587.

[25] Montet Y, Amara P, Volbeda A, et al. Gas access to the active site of Ni-Fe hydrogenases probed by X-ray crystallography and molecular dynamics. Nature Structural Biology, 1997, 4(7): 523-526.

[26] Lenz O, Gleiche A, Strack A, et al. Requirements for heterologous production of a complex metalloenzyme: the membrane-bound NiFe hydrogenase. Journal of bacteriology, 2005, 187(18): 6590-6595.

[27] Lauterbach L, Lenz O. Catalytic production of hydrogen peroxide and water by oxygen-tolerant NiFe -hydrogenase during H-2 cycling in the presence of O-2. Journal of the American Chemical Society, 2013, 135(47): 17897-17905.

[28] Hopkins R C, Sun J S, Jenney F E, et al. Homologous expression of a subcomplex of pyrococcus furiosus hydrogenase that interacts with pyruvate ferredoxin oxidoreductase. PloS one, 2011, 6(10).

[29] Chandrayan S K, McTernan P M, Hopkins R C, et al. Engineering hyperthermophilic archaeon Pyrococcus furiosus to overproduce its cytoplasmic NiFe -hydrogenase. Journal of Biological Chemistry, 2012, 287(5): 3257-3264.

[30] McTernan P M, Chandrayan S K, Wu C H, et al. Engineering the respiratory membrane-bound hydrogenase of the hyperthermophilic archaeon Pyrococcus furiosus and characterization of the catalytically active cytoplasmic subcomplex. Protein Engineering, Design & Selection: PEDS, 2015, 28(1): 1-8.

[31] McTernan P M, Chandrayan S K, Wu C H,et al. Intact functional fourteen-subunit respiratory membrane-bound NiFe -hydrogenase complex of the hyperthermophilic archaeon Pyrococcus furiosus. Journal of Biological Chemistry, 2014, 289(28): 19364-19372.

[32] English C M, Eckert C, Brown K, et al. Recombinant and in vitro expression systems for hydrogenases: new frontiers in basic and applied studies for biological and synthetic H2 production. Dalton transactions, 2009(45): 9970-9978.

[33] Sybirna K, Antoine T, Lindberg P, et al. Shewanella oneidensis: a new and efficient system for expression and maturation of heterologous Fe-Fe hydrogenase from Chlamydomonas reinhardtii. BMC Biotechnology, 2008, 8:73.

[34] Asada Y, Koike Y, Schnackenberg J, et al. Heterologous expression of clostridial hydrogenase in the cyanobacterium Synechococcus PCC7942. Biochimica Et Biophysica Acta-Gene Structure and Expression, 2000, 1490(3): 269-278.

[35] Berto P, D'Adamo S, Bergantino E, et al. The cyanobacterium Synechocystis sp PCC 6803 is able to express an active FeFe -hydrogenase without additional maturation proteins. Biochemical and Biophysical Research Communications, 2011, 405(4): 678-683.

[36] Atta M, Meyer J. Characterization of the gene encoding the Fe -hydrogenase from Megasphaera elsdenii. Biochimica Et Biophysica Acta-Protein Structure and Molecular Enzymology, 2000, 1476(2): 368-371.

[37] Gorwa M F, Croux C, Soucaille P. Molecular characterization and transcriptional analysis of the putative hydrogenase gene of Clostridium acetobutylicum ATCC 824. Journal of Bacteriology, 1996, 178(9): 2668-2675.

[38] Posewitz M C, King P W, Smolinski S L, et al. Discovery of two novel radical S-adenosylmethionine proteins required for the assembly of an active Fe hydrogenase. Journal of Biological Chemistry, 2004, 279(24): 25711-25720.

[39] King P W, Posewitz M C, Ghirardi M L, et al. Functional studies of
[FeFe] hydrogenase maturation in an Escherichia coli biosynthetic system. Journal of Bacteriology, 2006, 188(6): 2163-2172.

[40] Girbal L, von Abendroth G, Winkler M, et al. Homologous and heterologous overexpression in Clostridium acetobutylicum and characterization of purified clostridial and algal Fe-only hydrogenases with high specific activities. Applied and Environmental Microbiology, 2005, 71(5): 2777-2781.

[41] McGlynn S E, Ruebush S S, Naumov A, et al. In vitro activation of FeFe hydrogenase: new insights into hydrogenase maturation. Journal of Biological Inorganic Chemistry, 2007, 12(4): 443-447.

[42] Akhtar M K, Jones P R. Deletion of iscR stimulates recombinant clostridial Fe-Fe hydrogenase activity and H-2-accumulation in Escherichia coli BL21(DE3). Applied Microbiology and Biotechnology, 2008, 78(5): 853-862.

[43] Boyer M E, Stapleton J A, Kuchenreuther J M, et al. Cell-free synthesis and maturation of FeFe hydrogenases. Biotechnology and Bioengineering, 2008, 99(1): 59-67.

[44] Cohen J, Kim K, Posewitz M, et al. Molecular dynamics and experimental investigation of H-2 and O-2 diffusion in Fe -hydrogenase. Biochemical Society Transactions, 2005, 33: 80-82.

[45] Kindle K L. High-frequency nuclear transformation of Chlamydomonas reinhardtii.PNAS, 1990, 87(3): 1228-1232.

[46] Lumbreras V, Stevens D R, Purton S. Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant Journal, 1998, 14(4): 441-447.

[47] Blowers A D, Bogorad L, Shark K B, et al. Studies on chlamydomonas chloroplast transformation - foreign dna can be stably maintained in the chromosome. Plant Cell, 1989, 1(1): 123-132.

[48] Boynton J E, Gillham N W, Harris E H, et al. Chloroplast transformation in chlamydomonas with high-velocity microprojectiles. Science, 1988, 240(4858): 1534-1538.

[49] Casalot L, Rousset M. Maturation of the NiFe hydrogenases. Trends in Microbiology, 2001, 9(5): 228-237.

[50] Voordouw G, Hagen W R, Krusewolters K M, et al. Purification and characterization of Desulfovibrio-vulgaris (hildenborough) hydrogenase expressed in Escherichia-coli. European Journal of Biochemistry, 1987, 162(1): 31-36.

[51] Mura G M, Pedroni P, Pratesi C, et al. The Ni-Fe hydrogenase from the thermophilic bacteriuna Acetomicrobium flavidum. Microbiology-UK, 1996, 142: 829-836.

[52] Grzeszik C, Lubbers M, Reh M, et al. Genes encoding the NAD-reducing hydrogenase of Rhodococcus opacus MR11. Microbiology-UK, 1997, 143: 1271-1286.

[53] Rousset M, Magro V, Forget N, et al. Heterologous expression of the Desulfovibrio gigas NiFe hydrogenase in Desulfovibrio fructosovorans MR400. Journal of Bacteriology, 1998, 180(18): 4982-4986.

[54] Porthun A, Bernhard M, Friedrich B. Expression of a functional NAD-reducing
[NiFe]hydrogenase from the gram-positive Rhodococcus opacus in the gram-negative Ralstonia eutropha. Archives of Microbiology, 2002, 177(2): 159-166.

[55] Kim J Y, Jo B H, Cha H J. Production of biohydrogen by heterologous expression of oxygen-tolerant Hydrogenovibrio marinus
[NiFe]-hydrogenase in Escherichia coli. Journal of Biotechnology, 2011, 155(3): 312-319.

[56] Sun J, Hopkins R C, Jenney F E, et al. Heterologous expression and maturation of an NADP-dependent NiFe -hydrogenase: a key enzyme in biofuel production. PloS one, 2010, 5(5).

[57] Schiffels J, Pinkenburg O, Schelden M, et al. An innovative cloning platform enables large-scale production and maturation of an oxygen-tolerant NiFe -hydrogenase from Cupriavidus necator in Escherichia coli. PloS one, 2013, 8(7).

[58] Weyman P D, Vargas W A, Tong Y K, et al. Heterologous expression of Alteromonas macleodii and Thiocapsa roseopersicina NiFe hydrogenases in Synechococcus elongatus. PloS one, 2011, 6(5): 8.

[59] Wells M A, Mercer J, Mott R A, et al. Engineering a non-native hydrogen production pathway into Escherichia coli via a cyanobacterial NiFe hydrogenase. Metabolic Engineering, 2011, 13(4): 445-453.

[1] 王惠临,周凯强,朱红雨,王力景,杨仲璠,徐明波,曹荣月. 凝血因子VII及其重组表达新进展[J]. 中国生物工程杂志, 2021, 41(2/3): 129-137.
[2] 陈素芳,夏明印,曾丽艳,安晓琴,田敏芳,彭建. 抗菌肽Cec4a的重组表达和抗菌活性研究*[J]. 中国生物工程杂志, 2021, 41(10): 12-18.
[3] 乐易林,傅毓,倪黎,孙建中. 热稳定性丙酮酸:铁氧还蛋白氧化还原酶异源表达及其在乙酰辅酶A合成中的应用 *[J]. 中国生物工程杂志, 2020, 40(3): 72-78.
[4] 薛瑞,姚林,王瑞,罗正山,徐虹,李莎. 重组贻贝足蛋白的研究进展与应用*[J]. 中国生物工程杂志, 2020, 40(11): 82-89.
[5] 韩挺翰,龚雪梅,郦娟,丁亚芳,卢辰,张坤晓,高嵩,许恒皓. 一种来源于大菱鲆的热敏型尿嘧啶DNA糖苷酶的克隆表达及酶学性质鉴定 *[J]. 中国生物工程杂志, 2019, 39(10): 34-43.
[6] 王曦,张光德,陈熙明,浦铜良. 溶葡球菌酶在乳酸克鲁维酵母中重组表达、诱变、优化及酶学研究*[J]. 中国生物工程杂志, 2017, 37(12): 49-58.
[7] 曾杰. 优质L-天冬酰胺酶的开发与应用及重组表达研究进展[J]. 中国生物工程杂志, 2017, 37(11): 123-131.
[8] 饶菁菁, 景一娴, 邹明月, 胡小蕾, 廖飞, 杨晓兰. 季也蒙毕赤酵母菌尿酸酶基因的克隆、重组表达及表征[J]. 中国生物工程杂志, 2017, 37(11): 74-82.
[9] 赵一瑾, 王腾飞, 汪俊卿, 王瑞明. 以CotC为分子载体在枯草芽孢杆菌表面展示海藻糖合酶[J]. 中国生物工程杂志, 2017, 37(1): 71-80.
[10] 李梦悦, 王腾飞, 汪俊卿, 赵一瑾, 程成, 王瑞明. 海藻糖合酶在毕赤酵母表面的展示[J]. 中国生物工程杂志, 2016, 36(2): 73-80.
[11] 杨波, 陈海琴, 宋元达, 张灏, 陈卫. 动物双歧杆菌肌球交叉反应抗原MCRA酶学功能的研究[J]. 中国生物工程杂志, 2012, 32(12): 30-36.
[12] 高炳淼, 李宝珠, 吴勇, 林波, 朱晓鹏, 长孙东亭, 罗素兰. 重组芋螺毒素GeXIVAWT的表达、纯化和鉴定[J]. 中国生物工程杂志, 2012, 32(09): 34-40.
[13] 周罡, 杨君, 杨青. 亚洲玉米螟的O-β-N-氨基乙酰葡萄糖基水解酶 (OfOGA)的基因克隆及重组表达[J]. 中国生物工程杂志, 2012, 32(05): 36-42.
[14] 魏海涛 张艳 范耀春 李传印 文喻玲 陈元鼎. A组轮状病毒NSP1基因克隆表达及免疫学性质研究[J]. 中国生物工程杂志, 2010, 30(03): 15-21.
[15] 陈元鼎 李传印 范耀春 文喻玲 张艳 魏海涛. A组轮状病毒NSP6蛋白表达及免疫学性质研究[J]. 中国生物工程杂志, 2009, 29(09): 0-0.