Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2015, Vol. 35 Issue (5): 103-108    DOI: 10.13523/j.cb.20150515
综述     
口蹄疫病毒入侵宿主细胞研究进展
朱志坚1,2, 连凯琪2, 郑海学2, 杨孝朴1
1. 甘肃农业大学动物医学院 兰州 730070;
2. 中国农业科学院兰州兽医研究所 家畜疫病病原生物学国家重点实验室 兰州 730046
The Research Progress About Invasion of Foot and Mouth Virus to Cells
ZHU Zhi-jian1,2, LIAN Kai-qi2, ZHENG Hai-xue2, YANG Xiao-pu1
1. College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China;
2. State Key Laboratoray of Veterinary Etiological Biology, Lanzhou Veteriary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
 全文: PDF(405 KB)   HTML
摘要:

口蹄疫病毒(FMDV)是小RNA病毒科,口蹄疫病毒属的典型成员,是一种基因组大约含有8 400个核苷酸的无囊膜单股正链RNA病毒。大量研究发现识别细胞表面受体并侵入细胞是FMDV感染宿主细胞非常重要的环节;对FMDV而言,利用哪种受体就决定了利用哪种內吞路径。近年来在口蹄疫病毒入侵宿主细胞方面进行了大量研究,在一定程度上解释了口蹄疫病毒感染机制方面的问题,为解决实际生产问题提供了重要依据。对前期工作进行阶段性总结,为后期深入研究口蹄疫病毒致病机制和探索更有效的防治措施提供参考。

关键词: 口蹄疫病毒受体入侵机制自噬    
Abstract:

FMDV is a small, nonenveloped, positive-strand RNA virus belonging to the genus Aphthovirus within the family Picornaviridae. It contains about 8 400 nucleotides. Many studies have found that it is very important for infection that FMDV recognizes its receptor on cellular surface and enters host cell. Endocytic pathways of which FMDV enters host cell by depend on receptors of which FMDV uses to infect host cell. In recent years, there are a lot of work about the invasion of FMDV to host, explaining many problems about infection mechanism of foot and mouth disease, which provides a strong important base for the problem on actual production. The purpose of this paper is to summarized the previous studies, in order to providing reference for further study of pathogenic mechanism about foot-and-mouth disease virus and to exploring more effective prevention and control measures.

Key words: FMDV    Receptor    Invasion mechanism    Autophagy
收稿日期: 2015-02-04 出版日期: 2015-05-25
ZTFLH:  Q939  
基金资助:

省农牧厅生物技术专项(GNSW-2014-8)、国家自然基金(31302118)资助项目

通讯作者: 郑海学, 杨孝朴     E-mail: haixuezheng@163.com;yangxpu@gsau.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

朱志坚, 连凯琪, 郑海学, 杨孝朴. 口蹄疫病毒入侵宿主细胞研究进展[J]. 中国生物工程杂志, 2015, 35(5): 103-108.

ZHU Zhi-jian, LIAN Kai-qi, ZHENG Hai-xue, YANG Xiao-pu. The Research Progress About Invasion of Foot and Mouth Virus to Cells. China Biotechnology, 2015, 35(5): 103-108.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20150515        https://manu60.magtech.com.cn/biotech/CN/Y2015/V35/I5/103


[1] Grubman M J, Baxt B. Foot-and-mouth disease. Clin Microbiol Rev, 2004, 17(2): 465-493.

[2] Pelkmans L, Helenius A. Insider information: what viruses tell us about endocytosis. Curr Opin Cell Biol, 2003, 15(4): 414-422.

[3] Smith A E, Helenius A. How viruses enter animal cells. Science, 2004, 304(5668): 237-242.

[4] Barrow E, Nicola A V, Liu J. Multiscale perspectives of virus entry via endocytosis. Virol J, 2013, 10: 177.

[5] Hernaez B, Alonso C. Dynamin- and clathrin-dependent endocytosis in African swine fever virus entry. J Virol, 2010, 84(4): 2100-2109.

[6] Lee J J, Kim D G, Kim D H, et al. Interplay between clathrin and Rab5 controls the early phagocytic trafficking and intracellular survival of Brucella abortus within HeLa cells. J Biol Chem, 2013, 288(39): 28049-28057.

[7] O'Donnell V, Larocco M, Duque H, et al. Analysis of foot-and-mouth disease virus internalization events in cultured cells. J Virol, 2005, 79(13): 8506-8518.

[8] Berryman S, Clark S, Monaghan P, et al. Early events in integrin alpha v beta 6-mediated cell entry of foot-and-mouth disease virus. Journal of Virology, 2005, 79(13): 8519-8534.

[9] O'Donnell V, Pacheco J M, Larocco M, et al. Foot-and-mouth disease virus utilizes an autophagic pathway during viral replication. Virology, 2011, 410(1): 142-150.

[10] Du J, Chang H, Gao S, et al. Molecular characterization and expression analysis of porcine integrins alphavbeta3, alphavbeta6 and alphavbeta8 that are potentially involved in FMDV infection. Mol Cell Probes, 2010, 24(5): 256-265.

[11] Gullberg M, Muszynski B, Organtini L J, et al. Assembly and characterization of foot-and-mouth disease virus empty capsid particles expressed within mammalian cells. J Gen Virol, 2013, 94(Pt 8): 1769-1779.

[12] Ruiz-Saenz J, Goez Y, Tabares W, et al. Cellular receptors for foot and mouth disease virus. Intervirology, 2009, 52(4): 201-212.

[13] Bai X, Bao H, Li P, et al. Effects of two amino acid substitutions in the capsid proteins on the interaction of two cell-adapted PanAsia-1 strains of foot-and-mouth disease virus serotype O with heparan sulfate receptor. Virol J, 2014, 11: 132.

[14] Wang G, Wang Y, Shang Y, et al. How foot-and-mouth disease virus receptor mediates foot-and-mouth disease virus infection. Virol J, 2015, 12(1): 9.

[15] Burman A, Clark S, Abrescia N G A, et al. Specificity of the VP1 GH loo Pof foot-and-mouth disease virus for alpha v integrins. Journal of Virology, 2006, 80(19): 9798-9810.

[16] Berryman S, Clark S, Kakker N K, et al. Positively charged residues at the five-fold symmetry axis of cell culture-adapted foot-and-mouth disease virus permit novel receptor interactions. J Virol, 2013, 87(15): 8735-8744.

[17] Mohapatra J K, Pandey L K, Rai D K, et al. Cell culture adaptation mutations in foot-and-mouth disease virus serotype A capsid proteins: implications for receptor interactions. J Gen Virol, 2015, 96(Pt 3): 553-564.

[18] Mcmahon H T, Boucrot E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol, 2011, 12(8): 517-533.

[19] Johns H L, Berryman S, Monaghan P, et al. A dominant-negative mutant of rab5 inhibits infection of cells by foot-and-mouth disease virus: implications for virus entry. J Virol,2009, 83(12): 6247-6256.

[20] Martin-Acebes M A, Gonzalez-Magaldi M, Sandvig K, et al. Productive entry of type C foot-and-mouth disease virus into susceptible cultured cells requires clathrin and is dependent on the presence of plasma membrane cholesterol. Virology, 2007, 369(1): 105-118.

[21] Butan C, Filman D J, Hogle J M. Cryo-electron microscopy reconstruction shows poliovirus 135S particles poised for membrane interaction and RNA release. J Virol, 2014, 88(3): 1758-1770.

[22] Organtini L J, Makhov A M, Conway J F, et al. Kinetic and structural analysis of coxsackievirus B3 receptor interactions and formation of the A-particle. J Virol, 2014, 88(10): 5755-5765.

[23] Tuthill T J, Harlos K, Walter T S, et al. Equine rhinitis A virus and its low pH empty particle: clues towards an aphthovirus entry mechanism? PLoS Pathog, 2009, 5(10): e1000620.

[24] O'Donnell V, Larocco M, Baxt B. Heparan sulfate-binding foot-and-mouth disease virus enters cells via caveola-mediated endocytosis. J Virol, 2008, 82(18): 9075-9085.

[25] Christianson H C, Belting M. Heparan sulfate proteoglycan as a cell-surface endocytosis receptor. Matrix Biol, 2014, 35: 51-55.

[26] Howes M T, Mayor S, Parton R G. Molecules, mechanisms, and cellular roles of clathrin-independent endocytosis. Curr Opin Cell Biol, 2010, 22(4): 519-527.

[27] Chaudhary N, Gomez G A, Howes M T, et al. Endocytic crosstalk: cavins, caveolins, and caveolae regulate clathrin-independent endocytosis. PLoS Biol, 2014, 12(4): e1001832.

[28] Bai X, Bao H, Li P, et al. Effects of two amino acid substitutions in the capsid proteins on the interaction of two cell-adapted PanAsia-1 strains of foot-and-mouth disease virus serotype O with heparan sulfate receptor. Virol J, 2014, 11: 132.

[29] Taylor M P, Kirkegaard K. Modification of cellular autophagy protein LC3 by poliovirus. J Virol, 2007, 81(22): 12543-12553.

[30] Lee Y R, Lei H Y, Liu M T, et al. Autophagic machinery activated by dengue virus enhances virus replication. Virology, 2008, 374(2): 240-248.

[31] Bird S W, Maynard N D, Covert M W, et al. Nonlytic viral spread enhanced by autophagy components. Proc Natl Acad Sci U S A, 2014, 111(36): 13081-13086.

[32] Berryman S, Brooks E, Burman A, et al. Foot-and-mouth disease virus induces autophagosomes during cell entry via a class III phosphatidylinositol 3-kinase-independent pathway. J Virol, 2012, 86(23): 12940-12953.

[33] Wong J, Zhang J, Si X, et al. Autophagosome supports coxsackievirus B3 replication in host cells. J Virol, 2008, 82(18): 9143-9153.

[34] Taylor M P, Kirkegaard K. Modification of cellular autophagy protein LC3 by poliovirus. J Virol, 2007, 81(22): 12543-12553.

[35] Lin L T, Dawson P W, Richardson C D. Viral interactions with macroautophagy: a double-edged sword. Virology, 2010, 402(1): 1-10.

[36] Xu Y, Eissa N T. Autophagy in innate and adaptive immunity. Proc Am Thorac Soc, 2010, 7(1): 22-28.

[37] Jackson W T, Giddings T J, Taylor M P, et al. Subversion of cellular autophagosomal machinery by RNA viruses. PLoS Biol, 2005, 3(5): e156.

[38] Steinberger J, Grishkovskaya I, Cencic R, et al. Foot-and-mouth disease virus leader proteinase: structural insights into the mechanism of intermolecular cleavage. Virology, 2014, 468-470: 397-408.

[39] Gladue D P, O'Donnell V, Baker-Branstetter R, et al. Foot-and-mouth disease virus nonstructural protein 2C interacts with Beclin1, modulating virus replication. J Virol, 2012, 86(22): 12080-12090.

[40] Wang J, Wang Y, Liu J, et al. A critical role of N-myc and STAT interactor (Nmi) in foot-and-mouth disease virus (FMDV) 2C-induced apoptosis. Virus Res, 2012, 170(1-2): 59-65.

[41] Knowles N J, Davies PR, Henry T, et al. Emergence in Asia of foot-and-mouth disease viruses with altered host range: characterization of alterations in the 3A protein. J Virol, 2001, 75(3): 1551-1556.

[42] Gladue D P, O'Donnell V, Baker-Bransetter R, et al. Interaction of foot-and-mouth disease virus nonstructural protein 3A with host protein DCTN3 is important for viral virulence in cattle. J Virol, 2014, 88(5): 2737-2747.

[43] Armer H, Moffat K, Wileman T, et al. Foot-and-mouth disease virus, but not bovine enterovirus, targets the host cell cytoskeleton via the nonstructural protein 3C(pro). Journal of Virology, 2008, 82(21): 10556-10566.

[1] 李潇瑾,李艳萌,李振坤,徐安健,杨晓曦,黄坚. 基于转录组测序探究ATP7B基因缺陷小鼠铜累积诱导肝细胞自噬的相关机制*[J]. 中国生物工程杂志, 2021, 41(9): 10-19.
[2] 董雪迎,梁凯,叶克应,周策凡,唐景峰. 受体酪氨酸激酶对自噬的调控及其研究进展*[J]. 中国生物工程杂志, 2021, 41(5): 72-78.
[3] 蔡润泽,王正波,陈永昌. Mecp2影响Rett综合征中代谢功能的研究进展 *[J]. 中国生物工程杂志, 2021, 41(2/3): 89-97.
[4] 韩雪怡,李一帆,陆玥达,熊国良,喻长远. 具有自噬抑制作用的卟啉金属有机框架的制备及其光动力癌症治疗的研究*[J]. 中国生物工程杂志, 2021, 41(11): 48-54.
[5] 张晨阳,黑常春,袁仕林,周玉佳,曹美玲,秦亦欣,杨笑. SIRT3抑制线粒体自噬并减轻高糖加重的神经元缺氧再灌注损伤*[J]. 中国生物工程杂志, 2021, 41(11): 1-13.
[6] 贾晓,邱瑾,舒娟,李华,习书斌,曾溢滔,曾凡一. 血清孕酮水平检测在克隆胚胎移植受体牛的筛选及妊娠诊断中的应用 *[J]. 中国生物工程杂志, 2020, 40(7): 1-8.
[7] 郭洋,万颖寒,王珏,龚慧,周宇,慈磊,万志鹏,孙瑞林,费俭,沈如凌. Toll样受体4(TLR4)基因剔除小鼠构建及初步表型分析[J]. 中国生物工程杂志, 2020, 40(6): 1-9.
[8] 曾祥意,潘杰. 自噬调控白色脂肪细胞棕色化的研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 63-73.
[9] 戴奇男,张景红. 肿瘤多药耐药与自噬、DNA修复和肿瘤干细胞相关的分子机制研究进展 *[J]. 中国生物工程杂志, 2020, 40(4): 69-77.
[10] 徐应永. 基因治疗产品的开发现状与挑战[J]. 中国生物工程杂志, 2020, 40(12): 95-103.
[11] 胡妍,李辉,何承文,朱婧,谢志平. 酵母亚细胞结构分离效率评估菌株的构建 *[J]. 中国生物工程杂志, 2020, 40(10): 10-23.
[12] 陈曼,王爱先,傅旻婧,吴雪英,甄军毅,宫美维,郭亚,王卉. CAR细胞疗法在T细胞-急性淋巴细胞白血病应用的新进展[J]. 中国生物工程杂志, 2019, 39(9): 103-107.
[13] 朱永朝,陶金,任萌萌,熊燃,何亚琴,周瑜,卢震辉,杜勇,杨芝红. 自噬抑制肿瘤坏死因子α诱导人胎盘胎儿来源间充质干细胞发生凋亡 *[J]. 中国生物工程杂志, 2019, 39(9): 62-67.
[14] 朱颖,范梦恬,李具琼,陈彬,张盟浩,吴静红,施琼. 趋化因子受体CX3CR1调控人主动脉瓣膜间质细胞成骨分化的作用研究 *[J]. 中国生物工程杂志, 2019, 39(8): 7-16.
[15] 杨晓燕,毛景东,李树森,张新颖,杜立银. 细胞自噬对中性粒细胞功能调节的研究进展 *[J]. 中国生物工程杂志, 2019, 39(6): 84-90.