Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2015, Vol. 35 Issue (5): 87-95    DOI: 10.13523/j.cb.20150513
综述     
嘌呤核苷及其衍生物的代谢工程
王永成1,2,3, 陈涛1,2,3, 石婷1,2,3, 王智文1,2,3, 赵学明1,2,3
1. 天津大学化工学院 天津 300072;
2. 系统生物工程教育部重点实验室 天津 300072;
3. 天津化学化工协同创新中心 天津 300072
Progress in Biosynthesis of Purine Nucleosides and Their Derivatives by Metabolic Engineering
WANG Yong-cheng1,2,3, CHEN Tao1,2,3, SHI Ting1,2,3, WANG Zhi-wen1,2,3, ZHAO Xue-ming1,2,3
1. School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China;
2. Key Laboratory of Systems Bioengineering Ministry of Education, Tianjin 300072, China;
3. SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
 全文: PDF(721 KB)   HTML
摘要:

嘌呤核苷及其衍生物被广泛应用于食品和医药领域。利用诱变筛选技术可以获得嘌呤核苷类产品的工业生产菌株,但往往耗时,效率低,而且获得的某些高产菌株还存在不稳定的缺陷。菌株代谢调控与生理生化的研究为代谢工程优化嘌呤核苷类产品的合成提供了理论基础,利用代谢工程改造菌株合成嘌呤核苷也引起了研究人员的关注。系统地介绍了微生物嘌呤生物合成途径及其调控机制,综述了嘌呤核苷类产品及其衍生物的代谢工程研究进展,最后讨论了利用代谢工程改造菌株合成这些产品面临的问题及今后的研究方向。

关键词: 嘌呤核苷嘌呤生物合成途径调控机制代谢工程    
Abstract:

Purine nucleosides and their derivatives play an very important role in food and pharmaceutical industry. In recent years, they have gained further importance because of their beneficial effects, related to their antioxidant, neuroprotective and immunomodulatory properties. However, It is time consuming and low efficiency to get high-performing strains through mutation screening techniques. Moreover, some of these strains have disadvantage of genetic instability. With the better understanding of regulation mechanism of microorganism, metabolic engineering has been widely applied to improve the production of purine nucleoside products. In this article, the purine biosynthetic pathway and regulation mechanism are discussed, and progress in metabolic engineering of purine nucleosides and their derivatives is also reviewed. Meanwhile, the current problems and future research direction are proposed.

Key words: Purine nucleosides    Purine biosynthetic pathway    Regulation mechanism    Metabolic engineering
收稿日期: 2015-01-28 出版日期: 2015-05-25
ZTFLH:  Q815  
基金资助:

国家"973"计划(2011CBA00804,2012CB725203),国家自然科学基金(21206112,21390201,21176182),国家"863"计划(2012AA02A702,2012AA022103)资助项目

通讯作者: 王智文     E-mail: zww@tju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王永成, 陈涛, 石婷, 王智文, 赵学明. 嘌呤核苷及其衍生物的代谢工程[J]. 中国生物工程杂志, 2015, 35(5): 87-95.

WANG Yong-cheng, CHEN Tao, SHI Ting, WANG Zhi-wen, ZHAO Xue-ming. Progress in Biosynthesis of Purine Nucleosides and Their Derivatives by Metabolic Engineering. China Biotechnology, 2015, 35(5): 87-95.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20150513        https://manu60.magtech.com.cn/biotech/CN/Y2015/V35/I5/87


[1] Ledesma-Amaro R,Jiménez A,Santos M A,et al. Biotechnological production of feed nucleotides by microbial strain improvement. Process Biochemistry,2013,48(9):1263-1270.

[2] 蔡显鹏,储炬,庄英萍,等. 芽胞杆菌生产嘌呤核苷研究进展. 中国生物工程杂志,2002,22(5):9-14. Cai X P,Chu J,Zhuang Y P,et al. Progress on manufacturing purine nucleoside with Bacillus genus. China Biotechnology,2002,22(5):9-14.

[3] 徐善金,虞德兵,杜文兴. 肌苷酸及其相关酶的研究进展. 生物技术通报,2011,3:44-52. Xu S J,Yu D B,Du W X. Current research advances in IMP and related enzymes. Biotechnology Bulletin,2011,3:44-52.

[4] Ebbole D J,Zalkin H. Cloning and characterization of a 12-gene cluster from Bacillus subtilis encoding nine enzymes for de novo purine nucleotide synthesis. J Bio Chem,1987,262(17):8274-8287.

[5] 徐咏全,张蓓,张克旭. 谷氨酰胺磷酸核糖焦磷酸转酰胺酶研究进展. 生物技术通讯,2003,14(6):535-538. Xu Y Q,Zhang B,Zhang K X. Advanced studies on glutsmine phosphoribosylpyrophosphate amdo-transferase. Letters in Biotechnology,2003,14(6):535-538.

[6] Ljungdahl P O,Daignan-Fornier B. Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae. Genetics,2012,190(3):885-929.

[7] Escobar-Henriques M,Daignan-Fornier B. Transcriptional regulation of the yeast GMP synthesis pathway by its end products. J Bio Chem,2001,276(2):1523-1530.

[8] Shi T,Wang Y,Wang Z,et al. Deregulation of purine pathway in Bacillus subtilis and its use in riboflavin biosynthesis. Microb Cell Fact,2014,13:101.

[9] Ebbole D J,Zalkin H. Detection of pur operon-attenuated mRNA and accumulated degradation intermediates in Bacillus subtilis. J Bio Chem,1988,263(22):10894-10902.

[10] Weng M,Nagy P L,Zalkin H. Identification of the Bacillus subtilis pur operon repressor. PNAS,1995,92(16):7455-7459.

[11] Mandal M,Boese B,Barrick J E,et al. Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria. Cell,2003,113(5):577-586.

[12] Zakataeva N P,Romanenkov D V,Skripnikova V S,et al. Wild-type and feedback-resistant phosphoribosyl pyrophosphate synthetases from Bacillus amyloliquefaciens: purification, characteri-zation, and application to increase purine nucleoside production. Appl Microbiol Biotechnol,2012,93(5):2023-2033.

[13] Shimaoka M,Takenaka Y,Kurahashi O,et al. Effect of amplification of desensitized purF and prs on inosine accumulation in Escherichia coli. Journal of Bioscience and Bioengineering,2007,103(3):255-261.

[14] Jimenez A,Santos M A,Revuelta J L. Phospho-ribosyl pyrophosphate synthetase activity affects growth and riboflavin production in Ashbya gossypii. BMC Biotechnol,2008,8:67.

[15] Batool S,Nawaz M S,Kamal M A. In silico analysis of the amido phosphoribosyltransferase inhibition by PY873, PY899 and a derivative of isophthalic acid. Invest New Drugs,2013,31(5):1355-1363.

[16] Zhou G,Charbonneau H,Colman R F,et al. Identification of sites for feedback regulation of glutamine 5-phosphoribosylpyrophosphate amido-transferase by nucleotides and relationship to residues important for catalysis. J Bio Chem,1993,268(14):10471-10481.

[17] Saxild H H,Nygaard P. Regulation of levels of purine biosynthetic enzymes in Bacillus subtilis: effects of changing purine nucleotide pools. J Gen Microbiol,1991,137(10):2387-2394.

[18] Matsui H,Kawasaki H,Shimaoka M,et al. Investigation of various genotype characteristics for inosine accumulation in Escherichia coli W3110. Biosci Biotechnol Biochem,2001,65(3):570-578.

[19] Shimaoka M,Kawasaki H,Takenaka Y,et al. Effects of edd and pgi disruptions on inosine accumulation in Escherichia coli. Biosci Biotechnol Biochem,2005,69(7):1248-1255.

[20] Shimaoka M,Takenaka Y,Mihara Y,et al. Effects of xapA and guaA disruption on inosine accumulation in Escherichia coli. Biosci Biotechnol Biochem,2006,70(12):3069-3072.

[21] Lee W H,Shin S Y,Kim M D,et al. Modulation of guanosine nucleotides biosynthetic pathways enhanced GDP-L-fucose production in recombinant Escherichia coli. Appl Microbiol Biotechnol,2012,93(6):2327-2334.

[22] Matsui H,Shimaoka M,Takenaka Y,et al. gsk disruption leads to guanosine accumulation in Escherichia coli. Biosci Biotechnol Biochem,2001,65(5):1230-1235.

[23] Kamada N,Yasuhara A,Takano Y,et al. Effect of transketolase modifications on carbon flow to the purine-nucleotide pathway in Corynebacterium ammoniagenes. Appl Microbiol Biotechnol,2001,56(5-6):710-717.

[24] Peifer S,Barduhn T,Zimmet S,et al. Metabolic engineering of the purine biosynthetic pathway in Corynebacterium glutamicum results in increased intracellular pool sizes of IMP and hypoxanthine. Microb Cell Fact,2012,11:138.

[25] Asahara T,Mori Y,Zakataeva N P,et al. Accumulation of gene-targeted Bacillus subtilis mutations that enhance fermentative inosine production. Appl Microbiol Biotechnol,2010,87(6):2195-2207.

[26] Li H,Zhang G,Deng A,et al. De novo engineering and metabolic flux analysis of inosine biosynthesis in Bacillus subtilis. Biotechnol Lett,2011,33(8):1575-1580.

[27] Shi S,Shen Z,Chen X,et al. Increased production of riboflavin by metabolic engineering of the purine pathway in Bacillus subtilis. Biochemical Engineering Journal,2009,46(1):28-33.

[28] Shi S,Chen T,Zhang Z,et al. Transcriptome analysis guided metabolic engineering of Bacillus subtilis for riboflavin production. Metab Eng,2009,11(4–5):243-252.

[29] Lobanov K V,Errais Lopes L,Korol'kova N V,et al. Reconstruction of purine metabolism in Bacillus subtilis to obtain the strain producer of AICAR: a new drug with a wide range of therapeutic applications. Acta Naturae,2011,3(2):79-89.

[30] Sheremet A S,Gronskiy S V,Akhmadyshin R A,et al. Enhancement of extracellular purine nucleoside accumulation by Bacillus strains through genetic modifications of genes involved in nucleoside export. J Ind Microbiol Biotechnol,2011,38(1):65-70.

[31] 何逵夫,马跃超,杜姗姗,等. 解淀粉芽胞杆菌关键酶基因过表达对鸟苷积累的影响. 微生物学报,2012,52(6):718-725. He K F,Ma Y C,Du S S,et al. Effects of overexpression of key enzyme genes on guanosine accumulation in Bacillus amyloliquefaciens. Acta Microbiologica Sinica,2012,52(6):718-725.

[32] 鲍朋,陈宁,温廷益. 修饰的谷氨酰胺磷酸核糖焦磷酸转酰胺酶对鸟苷产量的影响. 安徽农业科学,2011,39(17):10097-10111. Bao P,Chen N,Wen T Y. Effects on guanosine productivity by modifying glutamine phospho-ribosylpyrophosphate amidotransferase. Journal of Anhui Agri Sci,2011,39(17):10097-10111.

[33] Rébora K,Laloo B,Daignan-Fornier B. Revisiting purine-histidine cross-pathway regulation in Saccharomyces cerevisiae: a central role for a small molecule. Genetics,2005,170(1):61-70.

[34] Gauthier S,Coulpier F,Jourdren L,et al. Co-regulation of yeast purine and phosphate pathways in response to adenylic nucleotide variations. Molecular Microbiology,2008,68(6):1583-1594.

[35] Ramazzina I,Costa R,Cendron L,et al. An aminotransferase branch point connects purine catabolism to amino acid recycling. Nat Chem Biol,2010,6(11):801-806.

[36] Ji W,Lee D,Wong E,et al. Specific gene repression by CRISPRi system transferred through bacterial conjugation. ACS Synth Biol,2014,3(12):929-931.

[37] Konermann S,Brigham M D,Trevino A E,et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature,2015,517(7536):583-588.

[38] Wang H H,Isaacs F J,Carr PA,et al. Programming cells by multiplex genome engineering and accelerated evolution. Nature,2009,460(7257):894-898.

[39] Warner J R,Reeder P J,Karimpour-Fard A,et al. Rapid profiling of a microbial genome using mixtures of barcoded oligonucleotides. Nat Biotechnol,2010,28(8):856-862.

[1] 马宁,王汉杰. 光遗传学在细菌生产调控中的应用进展[J]. 中国生物工程杂志, 2021, 41(9): 101-109.
[2] 苗轶男,李敬知,王帅,李春,王颖. 萜烯生物合成中关键酶的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 60-70.
[3] 李媛媛,李妍,曹英秀,宋浩. 黄素介导的胞外电子转移研究与工程改造*[J]. 中国生物工程杂志, 2021, 41(10): 89-99.
[4] 王光路, 王梦园, 周忆菲, 马科, 张帆, 杨雪鹏. 吡咯喹啉醌生物合成研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 103-113.
[5] 宇光海, 彭海芬, 王翱宇. 阿维拉霉素生物合成研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 94-102.
[6] 闫伟欢,黄统,洪解放,马媛媛. 丁醇在大肠杆菌中的生物合成研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 69-76.
[7] 薛艳婷,吴胜波,徐程杨,袁博鑫,杨书鹃,刘家亨,乔建军,朱宏吉. 群体感应在动态代谢调控中的研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 74-83.
[8] 刘金丛,刘雪,於洪建,赵广荣. 微生物合成根皮素及其糖苷研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 76-84.
[9] 姬凯茜,焦丹,谢忠奎,杨果,段子渊. 棕色脂肪细胞特异基因PRDM16的研究进展与展望 *[J]. 中国生物工程杂志, 2019, 39(4): 84-93.
[10] 马雅婷,刘珍宁,刘雪,於洪建,赵广荣. 微生物异源合成植物异喹啉生物碱的新进展 *[J]. 中国生物工程杂志, 2019, 39(11): 123-131.
[11] 于思礼,刘雪,张昭宇,於洪建,赵广荣. 甜菜素的生物合成及其代谢调控进展 *[J]. 中国生物工程杂志, 2018, 38(8): 84-91.
[12] 程丽娜,陆海燕,曲淑玲,张轶群,丁娟娟,邹少兰. 微生物发酵法生产环磷酸腺苷研究进展 *[J]. 中国生物工程杂志, 2018, 38(2): 102-108.
[13] 赵秀丽, 周丹丹, 闫晓光, 吴昊, 财音青格乐, 李艳妮, 乔建军. 细菌小RNA的调控及在代谢工程中的应用[J]. 中国生物工程杂志, 2017, 37(6): 97-106.
[14] 于潇淳, 马世良. 米曲霉外源表达系统研究进展[J]. 中国生物工程杂志, 2016, 36(9): 94-100.
[15] 李晓波, 刘雪, 赵广荣. 微生物合成黄酮糖苷类天然产物研究进展[J]. 中国生物工程杂志, 2016, 36(8): 105-112.