Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2015, Vol. 35 Issue (5): 41-48    DOI: 10.13523/j.cb.20150506
研究报告     
过量表达拟南芥CAT提高烟草对气体甲醛的吸收和抗性
韩双, 杨志丽, 陈丽梅
昆明理工大学生命科学与技术学院 生物工程技术研究中心 昆明 650500
Over Expression of Arabidopsis CAT Improved the Absorption and Tolerance of Gas HCHO in Tobacco
HAN Shuang, YANG Zhi-li, CHEN Li-mei
Biotechnology Research Center, College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
 全文: PDF(926 KB)   HTML
摘要:

为提高植物对甲醛的吸收和耐受,利用拟南芥CAT的编码区构建植物过表达载体pk2-PrbcS-*T-CAT,在野生型(WT)烟草叶绿体中过量表达CAT产生2个表达量不同的转基因株系(C1、C3)。用10ppm、20ppm和40ppm气体甲醛处理WT和转基因烟草,分析过量表达CAT的转基因烟草对甲醛的吸收效率和耐受性。结果表明,转基因烟草对气体甲醛的吸收量明显高于WT,且随着处理浓度的升高,转基因株系叶片的可溶性总糖、总蛋白质和总叶绿素含量都显著高于WT;转基因株系叶片氧化损伤指标H202、丙二醛(MDA)和羰基化蛋白(PC)的含量都显著低于野生型。转基因烟草(C1)的PM H+-ATPase和氢泵活性在40ppm处理后为WT的3倍和2.5倍,C1的气孔导度为WT的2.67倍。这些结果表明,在烟草中过量表达拟南芥CAT能降低甲醛进入烟草细胞引起的氧化损伤,提高烟草对甲醛的脱毒能力,增强烟草对甲醛的吸收和抗性。揭示气体甲醛胁迫时质膜H+-ATPase和氢泵活性影响叶片气孔的导度,这可能是转基因烟草甲醛吸收效率提高的原因之一。

关键词: 过氧化氢酶过量表达转基因烟草气体甲醛胁迫甲醛吸收    
Abstract:

To improve the absorption and tolerance of HCHO in plants, the plant expression vector pk2-PrbcS-*T-CAT was constructed using Arabidopsis thaliana CAT (catalase) coding region. Overexpression of CAT in wild-type (WT) tobacco chloroplasts produced two transgenic lines (C1, C3) which had different expression quantity. Using 10ppm, 20ppm and 40ppm gas HCHO treated WT and transgenic tobacco, and then analyzed the HCHO absorption efficiency and tolerance of CAT transgenic tobacco. The results showed that the absorption quantity of gas HCHO by transgenic tobacco was higher than wild type (WT), and with the increasing concentration, total soluble glucide, total protein and total chlorophyll content in leaves of the transgenic lines were significantly higher than WT. The oxidative damage index of H2O2, malondialdehyde (MDA) and protein carbonyl (PC) which content in transgenic lines leaves were significantly lower than the WT. The PM H+-ATPase and hydrogen pump activity of transgenic tobacco (C1) was 3 times and 2.5 times than WT after 40 ppm HCHO treatment. Stomatal conductance of C1 is 2.67 times than WT. These results indicated that overexpression of Arabidopsis CAT could reduce oxidative damage in tobacco cells which induced by HCHO, and improved the ability of tobacco to HCHO detoxification and enhanced the absorption and resistance of tobacco to HCHO. It was revealed that the stomatal conductance affected by PM H+-ATPase and hydrogen pump activity when gas HCHO stressed tobacco, which might be one of the causes of higher HCHO absorption efficiency of transgenic tobacco.

Key words: Catalase    Overexpression    Transgenic tobacco    Gas formaldehyde stress    Formaldehyde-uptake
收稿日期: 2015-01-13 出版日期: 2015-05-25
ZTFLH:  Q-33  
基金资助:

国家自然科学基金资助项目(30970263)

通讯作者: 陈丽梅     E-mail: chenlimeikm@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

韩双, 杨志丽, 陈丽梅. 过量表达拟南芥CAT提高烟草对气体甲醛的吸收和抗性[J]. 中国生物工程杂志, 2015, 35(5): 41-48.

HAN Shuang, YANG Zhi-li, CHEN Li-mei. Over Expression of Arabidopsis CAT Improved the Absorption and Tolerance of Gas HCHO in Tobacco. China Biotechnology, 2015, 35(5): 41-48.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20150506        https://manu60.magtech.com.cn/biotech/CN/Y2015/V35/I5/41


[1] 金凯洪,王宝荣,李磊,等.农药废水中甲醛资源化回收的应用研究//持久性有机污染物论坛2010暨第五届持久性有机污染物全国学术研讨会论文集,持久性有机污染物论坛2010暨第五届持久性有机污染物全国学术研讨会, 2010, 南京:中国化学会, 2010: 212-213. Jin K H,Wang B R, Li L, et al. Application of Formaldehyde Resources Recycling on Pesticide Wastewater//POPs Forum 2010 cum Proceedings of the Fifth Persistent Organic Pollutants National Symposium .POPs Forum 2010 cum and the Fifth Persistent Organic Pollutants National Symposium, 2010, Nanjing:Chinese Chemical Society, 2010: 212-213.

[2] 宋春生.室内空气污染的来源及危害.福建环境, 2001,18(5): 38-41. Song C S. Sources and harm of indoor air pollution. Fujian Environment, 2001, 18(5): 38-41.

[3] Wolverton B C, Mcdonald R C, Watkins E A. Foliage plants for removing indoor air pollution from energy-efficient homes. Economic Bitany, 1984, 38(2): 224-228.

[4] Schmitz H, Hilgers U, Weidner M, et al. Assimilation and metabolism of formaldehyde by leaves appear unlikely to be of value for indoor air purification. New Phytologist, 2000, 147(2): 307-315.

[5] Wang S S, Song Z B, Sun Z, et al. Physiological and transcriptional analysis of the effects of formaldehyde exposure on Arabidopsis thaliana. Acta Physiologiae Plantarum, 2012, 34(3):923-936.

[6] Zeng Z D, QI C J, Chen Q, et al. Absorption and metabolism of formaldehyde in solutions by detached banana leaves. Journal of Bioscience and Bioengineering, 2014, 117(5): 602-612.

[7] 赵辉,郝振萍,金潇潇,等.甲醛污染对3种室内观赏植物叶片保护酶活性的影响.安徽农业科学,2009, 37(32): 55-57. Zhao H, Hao Z P, Jin X X, et al. The effect of protection enzyme activity of 3 indoor ornamental plant leaves under formaldehyde pollution. Agricultural Science of AnHui, 2009, 37(32): 55-57.

[8] Christie J M, Briggs W R. Blue light sening in higher plants. J. Biol. Chem, 2001, 276 (15): 11457-11460.

[9] 张晓,岛崎研一郎.过氧化氢抑制蓝光诱导的14-3-3蛋白与向光素的结合.科学通报,2005,8(50):836-838. Zhang X, Shimazaki. Hydrogen peroxide inhibited that 14-3-3 proteins induced by Blue light combined with PHOT. Chinese Science Bulletin, 2005,8(50): 36-838.

[10] Zhang X, Zhang L, Dong F, et al. Hydrogen peroxid is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiology, 2001, 126: 1438-1448.

[11] Pei Z M, Murata Y, Benning G, et al. Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells. Nature, 2000, 406(6797): 731-744.

[12] Aebi H.Catalase in vitro. Methods in Enzymology, 1984, 105:121-126.

[13] 宋中邦. 提高天竺葵甲醛修复能力的遗传操作及模式植物甲醛代谢途径分析.昆明:昆明理工大学,生命科学与技术学院,2010,21-22. Song Z B. The genetic manipulation for enhancing formaldehyde phytoremediation ability of geranium and the analyses on formaldehyde metabolic pathways in model plants. Kanming:Kunming University of Science and Technology, Faculty of Life Science and Technology,2010, 21-22.

[14] Yemm E W, Willis A J. The estimation of carbohydrates in plant extracts by anthrone. Biochem J, 1954, 57(3): 508-514.

[15] 李合生.植物生理生化实验原理和技术.北京:高等教育出版社, 2003:143-145. Li H S. The Principle and Technology of Plant Physiology and Biochemistry Experiment. BeiJing: Higher Education Press, 2003:143-145.

[16] Gay C A, Gebicki J M. Measurement of protein and lipid hydroperoxides in biological systems by the ferric-xylenol orange method. Anal Biochem, 2003, 315(1): 29-35.

[17] Gurel A O, Coskun F, Armutcu, et al. Vitamin E against oxidative damage caused by formaldehyde in frontal cortex and hippocampus: biochemical and histological studies. Journal of Cheical Neuroanatomy, 2005,29(3):173-178.

[18] 王莎莎. C1化合物影响拟南芥和烟草生长的生理基础和分子机理研究. 昆明:昆明理工大学,生命科学与技术学院,2012,55-56. Wang S S. Study on Physiological Basis and Molecular Mechanism of Arabidopsis and Tobacco Growth Effects of C1 Compounds. Kunming:Kunming University of Science and Technology, Faculty of Life Science and Technology,2012.55-56.

[19] Giuseppina R, Graziano Z. Plasma membrane-bound H+-ATPase and reductase activities in Fe-defident cucumber roots. Physiologia Plantarum, 1994, 90(4):779-785.

[20] Shen H, He L F, Sasaki T, et al. Citrate secretion coupled with the modulation of soybean root tip under aluminum stress. up-regulation of transcription, translation, and threonine-oriented phosphorylation of plasma membrane H+-ATPase. Plant Physiology, 2005, 138(1):287-296.

[21] Chen W R, Liu M, Xu G D, et al. Effects of applicated on alleviation of aluminum toxicity to soybean. Journal of Zhejiang Normal University, 2008, 31(2):201-207.

[22] Andrew D, Saori M, Hans B. Expression profiling of the response of Arabidopsis thaliana to methanol stimulation. Phytochemistry, 2004,65(16):2305-2316.

[23] Serrano R. Structure and function of proton translocating ATPases in plasma membrane of plants and fungi. Bioch Bio Phy Acta, 1988, 947(1):1-28.

[24] Serrano R. Structure and function of plasma membrane ATPase. Plant Biology, 1989, 40: 61- 94.

[25] Christie J M, Briggs W R. Blue light sening in higher plants. The Journal of Biological Chemistry, 2001, 276(15):11457-11460.

[1] 姚民,朱淑华,李佛生,张士彦,唐琳. 异源表达AtCYSa基因烟草的耐盐和抗虫特性分析[J]. 中国生物工程杂志, 2018, 38(4): 8-16.
[2] 何晓娟, 薛正莲, 赵志军, 孙俊松, 史吉平. Thermus thermophilus HB27锰过氧化氢酶在大肠杆菌中的表达及酶学性质分析[J]. 中国生物工程杂志, 2014, 34(2): 52-58.
[3] 刘蕾, 孙振, 宋中邦, 肖素勤, 陈丽梅. 在叶绿体中过量表达AOD1和HPS-PHI创建光合甲醇同化途径增加烟草同化甲醇能力[J]. 中国生物工程杂志, 2013, 33(12): 69-78.
[4] 朱宽鹏, 赵树进. 芪合酶基因Fm-STS在何首乌毛状根中的过量表达及dsRNA干扰[J]. 中国生物工程杂志, 2012, 32(08): 41-48.
[5] 田亚茸, 王颖慧, 徐美爱, 林峻, 林娟, 叶秀云. 过氧化氢酶基因定向进化文库的构建及其评价[J]. 中国生物工程杂志, 2011, 31(9): 82-87.
[6] 宋锋 孙敏 罗克明. 一种基于PCR技术鉴定单拷贝转基因烟草的方法[J]. 中国生物工程杂志, 2010, 30(04): 83-88.
[7] 芦丽亚 宋维 游晓慧 江婷 赵凌侠. 用无选择标记的转基因烟草表达胸腺素α1(Tα1)[J]. 中国生物工程杂志, 2010, 30(03): 1-8.
[8] 庄军,刘志昕. 香蕉束顶病毒DNA组分2、3的启动子区的组织特异性分析[J]. 中国生物工程杂志, 2007, 27(9): 69-73.
[9] 肖海波,王岚,严琛,徐莺,陈放,唐琳. 转基因烟草表达西红花CSzCD基因产生西红花酸[J]. 中国生物工程杂志, 2007, 27(6): 51-55.
[10] 黄明星,魏琴,徐莺,陈放. 麻疯树逆境蛋白(curcin 2)基因在烟草中的表达[J]. 中国生物工程杂志, 2007, 27(4): 94-98.
[11] 王康. 超声对胃蛋白酶,胰蛋白酶,过氧化氢酶作用的研究[J]. 中国生物工程杂志, 2006, 26(05): 81-84.
[12] 郭兆奎, 杨谦, 姚泉洪, 万秀清, 颜培强. 转拟南芥AtKup1基因高含钾量烟草获得[J]. 中国生物工程杂志, 2005, 25(12): 24-28.
[13] 黄卓烈, 林茹, 何平, 丘泰球, 詹福建, 巫光宏, 赵赣. 超声波对酵母过氧化氢酶及多酚氧化酶活性的影响[J]. 中国生物工程杂志, 2003, 23(4): 89-93.
[14] 黄卓烈, 苏婷, 巫光宏, 梁欣欣, 何平, 詹福建, 丘泰球. 甲醇对酵母过氧化氢酶活性的影响机理研究[J]. 中国生物工程杂志, 2003, 23(12): 103-106.
[15] 李霞, 陈杭, 李晓东, 钟辉, 曹诚, 马清钧. 疟疾多抗原表位基因表达载体的构建及其在烟草中的表达[J]. 中国生物工程杂志, 1999, 19(4): 39-44,38.