Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2015, Vol. 35 Issue (5): 8-14    DOI: 10.13523/j.cb.20150502
研究报告     
S100A9促进肝癌细胞HepG2的存活与侵袭依赖于RAGE
武睿1, 周兰2, 崔鲂1
1. 重庆医科大学附属第一医院 重庆 400016;
2 重庆医科大学检验医学院 重庆 400016
S100A9 Promotes Human Hepatocellular Carcinoma Cell HepG2 Proliferation and Invasion Involving RAGE
WU Rui1, ZHOU Lan2, CUI Fang1
1. The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China;
2. Chongqing Medical University, Chongqing 400016, China
 全文: PDF(1281 KB)   HTML
摘要:

目的:探讨S100A9对人肝癌细胞系HepG2生物学行为的影响及可能机制。方法:采用免疫组织化学法与Western blot方法检测人肝癌组织与癌旁组织中S100A9蛋白表达水平;原核表达重组蛋白的方法构建重组蛋白GST-S100A9,用GST-S100A9处理肝癌细胞HepG2和肝正常细胞L02,然后用MTT法检测细胞存活能力,Transwell侵袭实验检测细胞侵袭力;Western blot方法检测肝癌细胞HepG2与肝正常细胞L02中晚期糖基化终末产物受体(RAGE)的表达水平。结果:S100A9在人肝癌组织中的表达较癌旁组织显著增高;GST-S100A9可以促进肝癌细胞HepG2的存活与侵袭,但对肝正常细胞L02无作用;RAGE的表达在HepG2细胞中较在L02细胞中显著升高;RAGE阻断抗体可阻断GST-S100A9对HepG2细胞的促存活与促侵袭作用,表明这些作用是通过RAGE介导的。结论:S100A9促进肝癌细胞HepG2的存活与侵袭依赖于RAGE。

关键词: 肝癌S100A9细胞存活肿瘤细胞侵袭RAGE    
Abstract:

Objective: To investigate the biological effect of S100A9 on human hepatocellular carcinoma cell line HepG2 and the relevent mechanism. Methods: Immunohistochemiy and Western blot assay were used to detect S100A9 expression in human hepatocellular carcinoma (HCC) intratumoral and peritumoral tissues. Prokaryotic expression system was used to prepare recombinant protein GST-S100A9. HCC cells HepG2 and live normal cells L02 were treated with GST-S100A9, then MTT assay was used to study the cell proliferation, and invasion assay was used to study cell invasiveness. Western blot assay was used to detect advanced glycation end products (RAGE) expression in HepG2 cells and L02 cells. Results: The expression of S100A9 was higher in HCC intratumoral tissues than that in peritumoral tissues. GST-S100A9 promoted the proliferation and invasion of HCC cells HepG2, but no effect on live normal cells L02. The expression of the receptor for RAGE in HepG2 cells was higher than that in L02 cells. Treatment with RAGE blocking antibody abrogated the S100A9-promoted proliferation and invasion of HepG2 cells, demonstrating that these biological effects were involved in RAGE. Conclusion: S100A9 promotes the proliferation and invasion of HepG2 cells involving RAGE.

Key words: Hepatocellular carcinoma    S100A9    Cell proliferation    Tumor cell invasion    RAGE
收稿日期: 2015-01-05 出版日期: 2015-05-25
ZTFLH:  R73  
基金资助:

国家临床重点专科建设项目(20100305),国家自然科学基金(30772548) 资助项目

通讯作者: 武睿     E-mail: xiayuxue2006@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

武睿, 周兰, 崔鲂. S100A9促进肝癌细胞HepG2的存活与侵袭依赖于RAGE[J]. 中国生物工程杂志, 2015, 35(5): 8-14.

WU Rui, ZHOU Lan, CUI Fang. S100A9 Promotes Human Hepatocellular Carcinoma Cell HepG2 Proliferation and Invasion Involving RAGE. China Biotechnology, 2015, 35(5): 8-14.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20150502        https://manu60.magtech.com.cn/biotech/CN/Y2015/V35/I5/8


[1] Donato R. S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol, 2001, 33(7): 637-668.

[2] Saleem M, Kweon M H, Johnson J J, et al. S100a4 accelerates tumorigenesis and invasion of human prostate cancer through the transcriptional regulation of matrix metalloproteinase 9. Proceedings of the National Academy of Sciences of the United States of America, 2006,103(40):14825-14830.

[3] Benedyk M, Sopalla C, Nacken W, et al. HaCaT keratinocytes overexpressing the S100 proteins S100A8 and S100A9 show increased NADPH oxidase and NF-kappaB activities. J Invest Dermatol, 2007, 127(8): 2001-2011.

[4] Markowitz J, Carson W E 3rd. Review of s100a9 biology and its role in cancer. Biochimica et Biophysica Acta, 2013,1835(1):100-109.

[5] Srikrishna G. S100A8 and S100A9: new insights into their roles in malignancy. J Innate Immun, 2012, 4(1):31-40.

[6] Salama I, Malone P S, Mihaimeed F, et al. A review of the S100 proteins in cancer. Eur J Surg Oncol, 2008, 34(4): 357-364.

[7] Duan L, Wu R, Ye L, et al. S100A8 and S100A9 are associated with colorectal carcinoma progression and contribute to colorectal carcinoma cell survival and migration via Wnt/beta-Catenin pathway. PLoS One, 2013, 8(4): e62092.

[8] Arai K, Yamada T, Nozawa R. Immunohistochemical investigation of migration inhibitory factor-related protein (MRP)-14 expression in hepatocellular carcinoma. Med Oncol, 2000, 17(3): 183-188.

[9] Nemeth J, Stein I, Haag D, et al. S100A8 and S100A9 are novel nuclear factor kappa B target genes during malignant progression of murine and human liver carcinogenesis. Hepatology, 2009, 50(4): 1251-1262.

[10] Riehl A, Nemeth J, Angel P, et al. The receptor rage: Bridging inflammation and cancer. Cell Commun Signal, 2009,7(10):12.

[11] Taguchi A, Blood D C, del Toro G, et al. Blockade of rage-amphoterin signalling suppresses tumour growth and metastases. Nature, 2000,405(6784):354-360.

[12] Hiwatashi K, Ueno S, Abeyama K, et al. A novel function of the receptor for advanced glycation end-products (RAGE) in association with tumorigenesis and tumor differentiation of HCC. Ann Surg Oncol,2008,15(3):923-933.

[13] Cheng P, Dai W, Wang F, et al. Ethyl pyruvate inhibits proliferation and induces apoptosis of hepatocellular carcinoma via regulation of the HMGB1-RAGE and AKT pathways. Biochem Biophys Res Commun,2014,443(4):1162-1168.

[14] Chen R C, Yi PP, Zhou R R, et al. The role of HMGB1-RAGE axis in migration and invasion of hepatocellular carcinoma cell lines. Mol Cell Biochem,2014,390(1-2):271-280.

[15] Takino J, Yamagishi S, Takeuchi M. Glycer-AGEs-RAGE signaling enhances the angiogenic potential of hepatocellular carcinoma by upregulating VEGF expression. World J Gastroenterol,2012,18(15):1781-1788.

[16] Hofmann M A, Drury S, Fu C, et al. Rage mediates a novel proinflammatory axis: a central cell surface receptor for s100/calgranulin polypeptides. Cell, 1999,97(7):889-901.

[17] Dattilo B M, Fritz G, Leclerc E, et al. The extracellular region of the receptor for advanced glycation end products is composed of two independent structural units. Biochemistry, 2007,46(23):6957-6970.

[18] Ghavami S, Rashedi I, Dattilo B M, et al. S100A8/A9 at low concentration promotes tumor cell growth via RAGE ligation and MA Pkinase-dependent pathway. J Leukoc Biol, 2008, 83(6): 1484-1492.

[19] 游莉,徐兰兰,郭元元,等.GST-hS100A9 融合蛋白的原核表达、纯化及鉴定.中国生化药物杂志,2011,32(4): 253-256. You L, Xu L L, Guo Y Y,et al. Prokaryotic expression, purification and identification of GST-human S100A9 fusion protein. Chinese Journal of Biochemical Pharmaceutics,2011,32(4): 253-256.

[20] Yang J D, Nakamura I, Roberts L R. The tumor microenvironment in hepatocellular carcinoma: current status and therapeutic targets. Semin Cancer Biol, 2011, 21(1):35-43.

[21] Geetha S. S100A8 and S100A9: new insights into their roles in malignancy. J Innate Immun, 2012, 4(1):31-40.

[22] Salama I, Malone P S, Mihaimeed F, et al. A review of the S100 proteins in cancer. Eur J Surg Oncol, 2008, 34(4): 357-364.

[23] Ito Y, Arai K, Ryushi, et al. S100A9 expression is significantly linked to dedifferentiation of thyroid carcinoma. Pathol Res Pract, 2005, 201(8-9):551-556.

[24] 朱红,刘丽,刘欢,等. Galectin-7和S100A9表达与宫颈鳞癌发生发展的相关性.中南大学学报(医学版), 2013,9(38): 888-895. Zhu H, Liu L, Liu H, et al. Expression of galectin-7 and S100A9 and development of cervical squamous carcinoma.Journal of Central South University: Medical Science, 2013,9(38): 888-895.

[25] 吴慧玲,董盛宇,叶耀耀,等. S100蛋白表达与鼻咽癌临床关系的研究.中国现代医药杂志, 2013, 15(5): 15-18. Wu H L,Dong S Y, Ye Y Y, et al. The expression and clinical significance of S100 protein family in nasopharyngeal carcinoma.Modern Medicine Journal Of China, 2013,15(5): 15-18.

[26] Hermani A, De Servi B, Medunjanin S, et al. S100A8 and S100A9 activate MA Pkinase and NF-kappaB signaling pathways and trigger translocation of RAGE in human prostate cancer cells. Exp Cell Res, 2006, 312(2): 184-197.

[27] Moon A, Yong H Y, Song J I, et al. Global gene expression profiling unveils S100A8/A9 as candidate markers in H-ras-mediated human breast epithelial cell invasion. Mol Cancer Res, 2008,6(10): 1544-1553.

[28] Yaser A M, Huang Y, Zhou R R, et al. The role of receptor for advanced glycation end products (RAGE) in the proliferation of hepatocellular carcinoma. Int J Mol Sci, 2012, 13(5): 5982-5997.

[1] 户丽君,段亮,黄逸云,林璐,黄茂,陈露,彭棋,胡琴,张彦,周兰. S100A9参与介导具核梭杆菌促结肠癌细胞的增殖与迁移的作用 *[J]. 中国生物工程杂志, 2020, 40(1-2): 84-91.
[2] 张秀瑜,王玎,杜燕娥,武睿,段亮. S100A9参与乙型肝炎病毒X蛋白介导的HepG2细胞增殖与迁移 *[J]. 中国生物工程杂志, 2018, 38(10): 1-7.
[3] 范梦恬, 陈思成, 郭杨柳, 李亚, 孙艳婷, 李汪, 施琼. 趋化因子受体CX3CR1对人肝癌细胞7721和HepG2的作用及其机制的研究[J]. 中国生物工程杂志, 2017, 37(6): 22-30.
[4] 谢琳娜,曾燕华,柯伙钊,何文胜,郑敏,林德馨. 在肝癌细胞SK-Hep1中沉默STAT3基因增强sorafenib疗效的初步研究*[J]. 中国生物工程杂志, 2017, 37(12): 8-13.
[5] 余琳,王建华,葛良鹏. 靶向Glypican-3的肝癌免疫治疗研究进展*[J]. 中国生物工程杂志, 2017, 37(12): 90-95.
[6] 张英敏, 赵娜, 李勇芳, 孟凡秀, 张琪, 高然朋, 张悦红, 于保锋, 郭睿, 王海龙, 解军, 徐钧. PBI-SUR-TK载体靶向介导HSV-TK自杀基因诱导肝癌细胞凋亡[J]. 中国生物工程杂志, 2016, 36(2): 16-21.
[7] 薛金锋, 薛志刚, 陈毅瑶, 李卓, 尹彪, 邬玲仟, 梁德生. 增强型肿瘤特异性启动子介导CDTK治疗肝癌的体内外研究[J]. 中国生物工程杂志, 2015, 35(6): 1-7.
[8] 叶雨辰, 赵俊龙, 王琳, 段娟丽, 高春辰, 秦鸿雁, 窦科峰. EGFP-Luc-Hepa1-6细胞系的构建及其在小鼠肝癌模型中的应用[J]. 中国生物工程杂志, 2015, 35(5): 1-7.
[9] 付怀秀, 于翔, 康宏向, 梁洁, 陈鹏, 沈本剑, 金义光, 熊力, 毛建平. Photosan脂质立方液晶纳米光敏剂的制备及光动力杀伤效应研究[J]. 中国生物工程杂志, 2015, 35(3): 35-41.
[10] 孟树林, 马步云, 张新敏, 葛云, 张蓉, 黄盼盼, 王毅刚. 硫利达嗪对肝癌干细胞的杀伤作用研究[J]. 中国生物工程杂志, 2015, 35(2): 8-17.
[11] 刘涛, 韩华锋, 马步云, 杨远勤, 卓玲燕, 周立, 王毅刚. 盐酸阿霉素增强溶瘤腺病毒ZD55-TRAIL抑制肝癌细胞生长的研究[J]. 中国生物工程杂志, 2014, 34(2): 26-33.
[12] 季辉, 王琦, 仲蕾, 魏文祥. URI基因稳定表达对肝癌SMMC-7721细胞增殖能力的影响[J]. 中国生物工程杂志, 2013, 33(6): 1-6.
[13] 李艳红, 李晓波, 陆雪莹, 高剑峰, 肖向文. 熊果酸增强小鼠肝癌细胞疫苗免疫原性的作用[J]. 中国生物工程杂志, 2013, 33(10): 28-35.
[14] 许英晨, 管利东, 周军年, 曾泉, 袁红丰, 李思霆, 管兆轩, 何丽娟, 南雪, 陈琳, 岳文, 裴雪涛. 肝癌肿瘤干细胞的分离鉴定及差异性小分子RNA筛选[J]. 中国生物工程杂志, 2013, 33(1): 1-7.
[15] 李玲玲, 江冠民, 张革, 衣艳梅, 张帆, 杜军. TSA通过抑制STAT1磷酸化与核转位下调人肝癌细胞HepG2内 IDO的表达[J]. 中国生物工程杂志, 2011, 31(9): 1-7.