Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (10): 87-93    DOI: 10.13523/j.cb.20141014
综述     
逆境胁迫下植物DNA甲基化变异的研究进展
徐妍1, 张海玲2, 徐香玲1, 张会新1, 姚琳1, 张必弦2, 王全伟1
1. 哈尔滨师范大学生命科学与技术学院 哈尔滨 150025;
2. 黑龙江省农业科学院 哈尔滨 150025
The Research Progress of Plant DNA Methylation Variation under Stresses
XU Yan1, ZHANG Hai-ling2, XU Xiang-ling1, ZHANG Hui-xin1, YAO Lin1, ZHANG Bi-xian2, WANG Quan-wei1
1. College of Life Science and Technology, Harbin Normal University, Harbin 150025, China;
2. Heilongjiang Agricultural Science Institute, Harbin 150086, China
 全文: PDF(547 KB)   HTML
摘要:

胁迫是指生物体持续地暴露在环境的刺激下,并且植物有能力建立保护和适应的机制.逆境胁迫抑制生物体的生长、发育和繁殖,它通常决定了物种的分布,更重要的是它对特定的种群提供了一种选择性进化动力.植物可以通过忍受、抗性和避免或最终逃避这三种不同的策略来应对胁迫.DNA甲基化作为一种表观遗传现象,是指在甲基化酶的作用下,不涉及基因的DNA序列改变,而使基因功能发生变化,以对外界的环境刺激作出应答反应.这种变化常常可以传递给后代,并形成表观遗传记忆,这对培育植物抗性新品种提供了可能.综述了植物响应逆境胁迫中的DNA甲基化修饰的研究进展,旨在深入了解DNA甲基化变化对植物抗逆性的影响.

关键词: 胁迫DNA甲基化表观遗传    
Abstract:

Stress refers to the organism under the stimulus of constant exposure to the environment. Plants have the ability to set up the system of protection and adaptation. Adversity stress inhibits the growth, development and reproduction of the organism. It often determines the distribution of the species. What is important is that it provides a selective dynamic evolution for a specific population. Plants can cope with stress through three different strategies, and these three different strategy is to endure, resistance and avoid or final escape. DNA methylation, as an epigenetic phenomenon, can make the gene function change without changing the DNA sequence via the effect of methylase, in response to external environmental stimuli. This change can often be passed on to offspring and form the epigenetic memory, this provides a possibility for cultivating plants resistant varieties. The research progress of plants DNA methylation modification under adversity stresses weve reviewed, aimed at further understanding the effects of DNA methylation changes to plant resistance.

Key words: Stress    DNA methylation    Epigenetic
收稿日期: 2014-07-10 出版日期: 2014-10-25
ZTFLH:  Q789  
基金资助:

黑龙江省自然科学基金重点项目(ZD201003)、哈尔滨市科技创新人才研究专项资金项目(RC2013QN002103)、黑龙江省教育厅科学技术研究项目(12511154)资助项目

通讯作者: 王全伟     E-mail: wqw125@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

徐妍, 张海玲, 徐香玲, 张会新, 姚琳, 张必弦, 王全伟. 逆境胁迫下植物DNA甲基化变异的研究进展[J]. 中国生物工程杂志, 2014, 34(10): 87-93.

XU Yan, ZHANG Hai-ling, XU Xiang-ling, ZHANG Hui-xin, YAO Lin, ZHANG Bi-xian, WANG Quan-wei. The Research Progress of Plant DNA Methylation Variation under Stresses. China Biotechnology, 2014, 34(10): 87-93.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20141014        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I10/87


[1] 邢世岩, 李际红, 王京梅, 等. 植物表观遗传变异. 分子植物育种, 2009, 7(5): 996-1003. Xing S Y, Li J H, Wang J M, et al. Summary of epigenetic variation in plants. Molecular Plant Breeding, 2009, 7(5): 996-1003.

[2] Goldberg A D, Allis C D, Bernstein E. Epigenetics: a landscape takes shape. Cell, 2007, 128(4): 635-638.

[3] Boyko A, Kovalchuk I. Epigenetic control of plant stress response. Environmental and Molecular Mutagenesis, 2008, 49(1): 61-72.

[4] Freitag M, Selker E U. Controlling DNA methylation: many roads to one modification. Current Opinion in Genetics & Development, 2005, 15(2): 191-199.

[5] 王子成, 李忠爱, 李锁平. MSAP 技术及其在植物上的应用. 生物技术通报, 2006,S1: 195-196. Wang Z C, Li Z A, Li S P. The technology of MSAP and its applications in plant. Biotechnology Bulletin, 2006,S1: 195-196.

[6] Bird A P. CpG-rich islands and the function of DNA methylation. Nature, 1985, 321(6067): 209-213.

[7] Steward N, Ito M, Yamaguchi Y, et al. Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. Journal of Biological Chemistry, 2002, 277(40): 37741-37746.

[8] Vanyushin B F, Ashapkin V V. DNA methylation in higher plants: past, present and future. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 2011, 1809(8): 360-368.

[9] Harris G. Molecular biology of DNA methylation. Cell Biochemistry and Function Cell Biochem Funct, 1987, 5(4):309.

[10] 黑淑梅, 慕明涛. DNA 甲基化在植物生长发育中的作用. 安徽农业科学, 2007, 35(21): 6368-6369. Hei S M, Mu M T. Effect of DNA methylation on the plant growth and development. Journal of Anhui Agricultural Science, 2007, 35(21): 6368-6369.

[11] 李娜, 张旸, 解莉楠, 等. 植物 DNA 甲基化研究进展. 植物生理学报, 2013, 48(11): 1027-1036. Li N, Zhang Y, Xie L N, et al. Research progress in DNA methylation in plants. Plant Physiology Journal, 2013, 48(11): 1027-1036.

[12] Finnegan E J, Kovac K A. Plant DNA methyltransferases. Plant Molecular Biology, 2000, 43(2-3): 189-201.

[13] Matzke M, Kanno T, Huettel B, et al. Targets of RNA-directed DNA methylation. Current Opinion in Plant Biology, 2007, 10(5): 512-519.

[14] Zhang H, Zhu J K. RNA-directed DNA methylation. Current Opinion in Plant Biology, 2011, 14(2): 142-147.

[15] 马浪浪, 江舟, 黄小波, 等. 植物 DNA 甲基化调控研究进展. 中国生物工程杂志, 2013, 33(9): 101-110. Ma L L, Jiang Z, Huang X B, et al. Research progress of DNA methylation on plant regulation. China Biotechnology, 2013, 33(9): 101-110.

[16] Lindroth A M, Cao X, Jackson J P, et al. Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science, 2001, 292(5524): 2077-2080.

[17] Tompa R, McCallum C M, Delrow J, et al. Genome-wide profiling of DNA methylation reveals transposon targets of CHROMOMETHYLASE3. Current Biology, 2002, 12(1): 65-68.

[18] Goodrich J, Tweedie S. Remembrance of things past: chromatin remodeling in plant development. Annual Review of Cell and Developmental Biology, 2002, 18(1): 707-746.

[19] Chinnusamy V, Zhu J K. Epigenetic regulation of stress responses in plants. Current Opinion in Plant Biology, 2009, 12(2): 133-139.

[20] 彭海, 张静. 胁迫与植物 DNA 甲基化: 育种中的潜在应用与挑战. 自然科学进展, 2009, 19(3): 248-256. Peng H, Zhang J. Plant genomic DNA methylation in response to stresses: potential applications and challenges in plant breeding. Progress in Natural Science, 2009, 19(3): 248-256.

[21] 邢燕霞, 黄韫宇, 齐艳, 等. NaCl 胁迫下黑麦草种子萌发过程中 DNA 甲基化与基因表达分析. 草地学报, 2014, 22(2): 366-374. Xing Y X, Huang Y Y, Qi Y, et al. Analyses of DNA methylation and gene expression of Lolium perenne during seed germination under NaCl stress. Acta Agrestia Sinica, 2014, 22(2): 366-374.

[22] Marconi G, Pace R, Traini A, et al. Use of MSAP markers to analyse the effects of salt stress on DNA methylation in rapeseed (Brassica napus var. oleifera). PloS one, 2013, 8(9): e75597.

[23] Zhao Y L, Yu S X, Ye W W, et al. Study on DNA cytosine methylation of cotton (Gossypium hirsutum L.) genome and its implication for salt tolerance. Agricultural Sciences in China, 2010, 9(6): 783-791.

[24] Wang W, Zhao X, Pan Y, et al. DNA methylation changes detected by methylation-sensitive amplified polymorphism in two contrasting rice genotypes under salt stress. Journal of Genetics and Genomics, 2011, 38(9): 419-424.

[25] 钟兰. 盐胁迫下小麦幼苗的生理生化特性及表观遗传学研究. 武汉:武汉大学, 2009. Zhong L. Studies on the physio-biochemical properties and epigenetics of seedlings of wheat under salt stress. Wuhan:Wuhan University, 2009.

[26] 厉广辉, 张昆, 刘风珍, 等. 不同抗旱性花生品种的叶片形态及生理特性. 中国农业科学, 2014, 47(4): 644-654. Li G H, Zhang K, Li F Z, et al. Morphological and physiological traits of leaf in different drought resistant peanut cultivars. Scientia Agricultura Sinica, 2014, 47(4): 644-654.

[27] 潘雅姣, 傅彬英, 王迪, 等. 水稻干旱胁迫诱导 DNA 甲基化时空变化特征分析. 中国农业科学, 2009, 42(9): 3009-3018. Pan Y J, Fu B Y, Wang D, et al. Spatial and temporal profiling of DNA methylation induced by drought stress in rice. Scientia Agricultura Sinica, 2009, 42(9): 3009-3018.

[28] 郑小国, 陈亮, 楼巧君, 等. 干旱驯化后节水抗旱稻苗期不同发育时间 DNA 甲基化模式变化分析. 中国水稻科学, 2014, 28(1): 32-40. Zheng X G, Chen L, Lou Q H, et al. Changes in DNA methylation pattern in a water-saving and drought-resistance rice variety at three-leaf and four-leaf stages after drought domestication. Chinese Journal of Rice Science, 2014, 28(1): 32-40.

[29] 陈芳, 王子成, 何艳霞, 等. 超低温保存小麦种子和幼苗的遗传变异分析. 核农学报, 2009, 23(4): 548-554. Chen F, Wang Z C, He Y X, et al. Analysis of genetic variation of wheat seeds and seedlings caused by ultra-low-temprature preservation. Journal of Nuclear Agricultural Sciences, 2009, 23(4): 548-554.

[30] Steward N, Ito M, Yamaguchi Y, et al. Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. J Biol Chem, 2002,277(40): 37741-37746.

[31] Hao Y J, You C X, Deng X X. Analysis of ploidy and the patterns of amplified fragment length polymorphism and methylation sensitive amplified polymorphism in strawberry plants recovered from cryopreservation. CryoLetters, 2002, 23(1): 37-46.

[32] 盖树鹏, 张风, 张玉喜, 等. 低温解除牡丹休眠进程中基因组 DNA 甲基化敏感扩增多态性(MSAP) 分析. 农业生物技术学报, 2012, 20(3): 261-267. Gai S P, Zhang F, Zhang Y X, et al. Analysis of genomic DNA methylation during chilling induced endo-dormancy release by methylation sensitive amplified polymorphism (MSAP) technology in tree peony (Paeonia suffruticosa). Journal of Agricultural Biotechnology, 2012, 20(3): 261-267.

[33] Hashida S, Kitamura K, Mikami T, et al. Temperature shift coordinately changes the activity and the methylation state of transposon Tam3 in Antirrhinum majus. Plant Physiology, 2003, 132(3): 1207-1216.

[34] Hashida S N, Uchiyama T, Martin C, et al. The temperature-dependent change in methylation of the antirrhinum transposon Tam3 is controlled by the activity of its transposase. The Plant Cell Online, 2006, 18(1): 104-118.

[35] 何艳霞, 王子成. 拟南芥幼苗超低温保存后 DNA 甲基化的遗传变异. 植物学报, 2009 (3): 317-322. He Y X, Wang Z C. Variation of DNA methylation in Arabidopsis thaliana seedlings after the cryopreservation. Chinese Bulletin of Botany, 2009 (3): 317-322.

[36] 欧秀芳. 重金属胁迫诱导水稻发生可遗传的表观遗传变异及其可能作用于水稻提高抗重金属能力的机制研究. 长春: 东北师范大学, 2009. Ou X F. Heavy metal stress induced inheritable alterations of epigenetic which may contribute to plant enhanced resistance to heavy metal damage in rice. Changchun: Northeast Normal University, 2009.

[37] 李照令, 王鹤潼, 陈瑞娟, 等. 运用 MSAP 研究镉胁迫对拟南芥幼苗基因甲基化的影响. 农业环境科学学报, 2014, 33(1): 28-36. Li Z L, Wang H T, Chen R J, et al. Studying genomic methylation of Arabidopsis thaliana seedlings under cadmium stress using MSAP. Journal of Agriculture Environment Science, 2014, 33(1): 28-36.

[38] 杨金兰, 柳李旺, 龚义勤, 等. 镉胁迫下萝卜基因组 DNA 甲基化敏感扩增多态性分析. 植物生理与分子生物学学报, 2007, 33(3): 219-226. Yang J L, Liu L W, Gong Y Q, et al. Analysis of genomic DNA methylation level in radish under cadmium stress by methylation-sensitive amplified polymorphism technique. Journal of Plant Physiology and Molecular Biology, 2007, 33(3): 219-226.

[39] Labra M, Grassi F, Imazio S, et al. Genetic and DNA-methylation changes induced by potassium dichromate in Brassica napus L. Chemosphere, 2004, 54(8): 1049-1058.

[40] Aina R, Sgorbati S, Santagostino A, et al. Specific hypomethylation of DNA is induced by heavy metals in white clover and industrial hemp. Physiologia Plantarum, 2004, 121(3): 472-480.

[41] Ou X, Zhang Y, Xu C, et al. Transgenerational inheritance of modified DNA methylation patterns and enhanced tolerance induced by heavy metal stress in rice (Oryza sativa L.). PloS One, 2012, 7(9): e41143.

[42] 庄婷婷. NO 胁迫诱导水稻 DNA 甲基化变异及转座子和基因的转录激活. 长春:东北师范大学, 2008. Zhuang T T. NO stress induce variation of DNA methylation and transcriptional activation of mobile elements and genes in rice (Oryza Sativa L.) . Changchun: Northeast Normal University, 2008.

[43] 殷文超. 一氧化氮 (NO) 胁迫诱导水稻转座子发生遗传和表观遗传变异. 长春:东北师范大学, 2010. Yin W C. Nitric oxide stress-induced genetic and epigenetic variations of transposable elements in rice. Changchun: Northeast Normal University, 2010.

[44] 李利红, 仪慧兰, 王艺雯, 等. 二氧化硫胁迫诱导拟南芥 NIT2 基因 DNA 甲基化修饰.农业环境科学学报, 2012, 31(4): 685-690. Li L H, Yi H L, Wang Y W, et al. Sulfur dioxide induces DNA methylation alteration of a gene encoding nitrilase 2 protein in Arabidopsis plants. Journal of Agro-Environment Science,2012, 31(4): 685-690.

[45] Kovalchuk I, Kovalchuk O, Kalck V, et al. Pathogen-induced systemic plant signal triggers DNA rearrangements. Nature,2003, 423:760-762.

[46] Boyko A, Kathiria P, Zemp F J, et al. Transgenerational changes in the genome stability and methylation in pathogen-infected plants. Nucl Acids Res, 2007,35(5):1714-1725.

[47] Akimoto K, Katakami H, Kim H J, et al. Epigenetic inheritance in rice plants. Annals of Botany, 2007, 100(2): 205-217.

[48] Boyko A, Kovalchuk I. Epigenetic control of plant stress response. Environmental and Molecular Mutagenesis, 2008, 49(1): 61-72.

[49] Sha A H, Lin X H, Huang J B, et al. Analysis of DNA methylation related to rice adult plant resistance to bacterial blight based on methylation-sensitive AFLP (MSAP) analysis. Molecular Genetics and Genomics, 2005, 273(6): 484-490.

[50] 刘丽, 张志明, 李代波, 等. 玉米纹枯病菌侵染的病理学观察及基因组甲基化敏感扩增多态性分析. 农业生物技术学报, 2011, 19(2): 243-249. Liu L, Zhang Z M, Li D B, et al. Analysis of infection process and methylation-sensitive amplified polymorphism in Zea mays genome stressed by Rhizoctonia solani. Journal of Agricultural Biotechnology, 2011, 19(2): 243-249.

[51] Dowen R H, Pelizzola M, Schmitz R J, et al. Widespread dynamic DNA methylation in response to biotic stress. Proceedings of the National Academy of Sciences, 2012, 109(32): 2183-2191.

[52] Wada Y, Miyamoto K, Kusano T, et al. Association between up-regulation of stress-responsive genes and hypomethylation of genomic DNA in tobacco plants. Molecular Genetics and Genomics, 2004, 271(6): 658-666.

[53] 许静静, 杨凯, 王文和, 等. 病毒侵染对西伯利亚百合 DNA 甲基化的影响. 西北植物学报,2011, 31(5): 935-941. Xu J J, Yang K, Wang W H, et al. Effect of virus Infection on DNA methylation of Lilium‘Siberia’. Journal of Northwest Plants, 2011, 31(5): 935-941.

[54] Fieldes M A, Schaeffer S M, Krech M J, et al. DNA hypomethylation in 5-azacytidine-induced early-flowering lines of flax. Theoretical and Applied Genetics, 2005, 111(1): 136-149.

[55] Kou H P, Li Y, Song X X, et al. Heritable alteration in DNA methylation induced by nitrogen-deficiency stress accompanies enhanced tolerance by progenies to the stress in rice (Oryza sativa L.). Journal of Plant Physiology, 2011, 168(14): 1685-1693.

[56] Wang H, Feng Q, Zhang M, et al. Alteration of DNA methylation level and pattern in sorghum (Sorghum bicolor L.) pure-lines and inter-line F1 hybrids following low-dose laser irradiation. Journal of Photochemistry and Photobiology B: Biology, 2010, 99(3): 150-153.

[1] 乔圣泰,王曼琦,徐慧妮. 番茄SlTpx原核表达蛋白的体外功能分析*[J]. 中国生物工程杂志, 2021, 41(8): 25-32.
[2] 杨万斌,徐燕,卓士铉,王心怡,李雅静,郭一凡,张正光,郭园园. 长链非编码RNA相关表观遗传修饰在癌症中的进展*[J]. 中国生物工程杂志, 2021, 41(8): 59-66.
[3] 颜愈佳,邹玲. piRNA生物学起源及功能研究进展[J]. 中国生物工程杂志, 2021, 41(5): 45-50.
[4] 高小朋,何猛超,许可,李春. 工业微生物发酵过程中pH调控研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 93-99.
[5] 姚长洪, 吴佩春, 曹旭鹏, 刘娇, 姜君鹏, 薛松. 两株筛自大规模生产跑道池的节旋藻性能比较研究[J]. 中国生物工程杂志, 2017, 37(5): 28-37.
[6] 张雪, 陶磊, 乔晟, 杜秉昊, 郭长虹. 谷胱甘肽转移酶在植物抵抗非生物胁迫方面的角色[J]. 中国生物工程杂志, 2017, 37(3): 92-98.
[7] 单洪瑜, 刘仁泽, 郝梦琪, 董晓雨, 郭长虹, 郭东林. 植物铁蛋白与氧化胁迫应激[J]. 中国生物工程杂志, 2017, 37(2): 121-126.
[8] 张丽丽, 徐碧玉, 刘菊华, 贾彩红, 张建斌, 金志强. 转香蕉MaASR1基因的拟南芥株系在干旱胁迫条件下的表达谱分析[J]. 中国生物工程杂志, 2017, 37(11): 59-73.
[9] 王利群, 鲁洪中, 储炬, 王永红. 不同培养方式下dCO2对黑曲霉发酵产糖化酶的影响[J]. 中国生物工程杂志, 2017, 37(1): 27-37.
[10] 韩晗, 包旦奇, 杨飞芸, 刘坤, 杨天瑞, 杨杞, 李国婧, 王瑞刚. 中间锦鸡儿CiCHIL克隆及其黄酮代谢功能研究[J]. 中国生物工程杂志, 2016, 36(9): 11-20.
[11] 苏稚喆, 王雪华, 杨华, 孙焕, 魏炜. 镉胁迫下麻疯树转录组测序分析[J]. 中国生物工程杂志, 2016, 36(4): 69-77.
[12] 李帅, 单洪瑜, 董晓雨, 郭长虹, 郭东林. 磷酸肌醇磷脂酶C在DREB2表达调控中的作用[J]. 中国生物工程杂志, 2016, 36(4): 110-115.
[13] 于秀敏, 岳文冉, 张燕娜, 杨飞芸, 王瑞刚, 李国婧, 杨杞. 异源表达CkLEA1基因增强了拟南芥对非生物胁迫的耐受性[J]. 中国生物工程杂志, 2016, 36(10): 28-34.
[14] 孙瑞芬, 张艳芳, 郭树春, 于海峰, 李素萍, 乔慧蕾, 聂惠, 安玉麟. 向日葵ACC氧化酶基因(HaACO1)的克隆及表达分析[J]. 中国生物工程杂志, 2015, 35(9): 21-27.
[15] 李洋, 于丽杰, 金晓霞. 植物重金属胁迫耐受机制[J]. 中国生物工程杂志, 2015, 35(9): 94-104.