Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (10): 73-78    DOI: 10.13523/j.cb.20141012
技术与方法     
基于活细胞量测量的利福霉素发酵过程氮源优化策略
刘爱军1, 史守坤1, 李兰2, 王萍2,3, 王伟3, 贾军巧1, 王泽建2, 李海东1, 庄英萍2, 张嗣良2
1. 河北欣港药业有限公司 石家庄 051530;
2. 华东理工大学国家生物反应器工程重点实验室 上海 200237;
3. 河北医科大学 西山校区 石家庄 050017
Studies on the Measurement of Viable Biomass in the Optimization of Rifamycins SV Fermentation Process
LIU Ai-jun1, SHI Shou-kun1, LI Lan2, WANG Ping2,3, WANG Wei3, JIA Jun-qiao1, WANG Ze-jian2, LI Hai-dong1, ZHUANG Ying-ping2, ZHANG Si-liang2
1. Hebei Xingang Pharmaceutical Co., Ltd., Shijiazhuang 051530, China;
2. State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China;
3. Hebei Medical University Xishan Department, Shijiazhuang 050017, China
 全文: PDF(868 KB)   HTML
摘要:

在发酵生产利福霉素SV的过程中,其菌丝体的生长代谢情况及产物发酵合成都与有活力的菌丝量密切相关.介绍了在线活细胞传感仪测定活细胞量的方法,它利用细胞的介电特性,能够排除发酵液中固含物的干扰,测得的电容值与活细胞浓度呈线性相关,可以作为工艺优化过程中的关键参数.通过电容变化反映的前期生长出现的二次生长现象,进行了通过使用迟效氮源豆饼粉代替了原培养基中价格昂贵的速效氮源蛋白胨,成功消除了发酵前期由于氮源利用转换造成的生长停滞期,利用豆饼粉情况下培养前期的OUR和CER达到了14.8和15.3 mmol/L/h,明显高于利用速效氮源蛋白胨A组的8.6和11.3 mmol/L/h,保证了持续较高的比生长速率,对于促进菌体的氧消耗速率的增加和维持有着重要的作用,明显有利于利福霉素的合成与速率的维持,氮源替代组的发酵效价达到了5969±19 U/ml,与对照组(5030±17U/ml)相比显著提升发酵单位18.7%以上.

关键词: 利福霉素SV活细胞量在线活细胞传感仪电容值工艺优化    
Abstract:

The amount of viable biomass is an important physiological parameter, which is correlated with the cell growth, metabolism and productivity during the rifamycins SV fermentation process. The measurement of viable biomass was studied employing on-line Biomass Monitor. It was able to utilize the dielectric properties of cells, and the capacitance measurement was correlated well with the viable biomass concentration excluding the interference of solid materials. At the same time, there was close connections among the capacitance measurement, OUR, CER and mycelial morphology. The diauxic growth phenomenon in the former fermentation was detected using capacitance detection, and the slow-release nitrogen source soyben powder instead of the original expensive fast-release nitrogen source of peptone was used for rifamycins SV fermentation, successfully eliminated the diauxic growth caused by nitrogen source using the conversion of stagnation, the physiological parameters of OUR and CER reached and maintained at 14.8 and 15.3 mmol/L/h at early growth phase, significantly higher than that under peptone conditions for only 8.6 and 11.3 mmol/L/h, which promote the continued higher rifamycin SV biosynthesis, the fermentation titer reached to 5969 + 19 U/ml, which was 18.7% higher than that of control (5030 + 17 U/ml).

Key words: Rifamycins SV    Viable biomass    On-line Biomass Monitor    Capacitance measurement    Process optimization
收稿日期: 2014-07-08 出版日期: 2014-10-25
ZTFLH:  Q819  
通讯作者: 王泽建     E-mail: wangzejian@ecust.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

刘爱军, 史守坤, 李兰, 王萍, 王伟, 贾军巧, 王泽建, 李海东, 庄英萍, 张嗣良. 基于活细胞量测量的利福霉素发酵过程氮源优化策略[J]. 中国生物工程杂志, 2014, 34(10): 73-78.

LIU Ai-jun, SHI Shou-kun, LI Lan, WANG Ping, WANG Wei, JIA Jun-qiao, WANG Ze-jian, LI Hai-dong, ZHUANG Ying-ping, ZHANG Si-liang. Studies on the Measurement of Viable Biomass in the Optimization of Rifamycins SV Fermentation Process. China Biotechnology, 2014, 34(10): 73-78.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20141012        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I10/73


[1] Carvell J P, Dowd J E. On-line measurements and control of viable cell density in cell culture manufacturing processes using radio-frequency impedance. 2006,50(3):35-48.

[2] Holwerda E K, Ellis L D, Lynd L R. Development and evaluation of methods to infer biosynthesis and substrate consumption in cultures of cellulolytic microorganisms. Biotechnology and Bioengineering, 2013,110(9):2380-2388.

[3] Arnold S A, Gaensakoo R, Harvey L M, et al. Use of at-line and in-situ near-infrared spectroscopy to monitor biomass in an industrial fed-batch Escherichia coli process. Biotechnology and Bioengineering, 2002, 80(4): 405-413.

[4] Liu J J, Li H, Zhang F, et al. Online impedance monitoring of yeast cell culture behaviors. Microelectronic Engineering, 2011, 88(8): 1711-1713.

[5] Kiviharju K, Salonen K, Moilanen U, et al. Biomass measurement online: the performance of in situ measurements and software sensors. Journal of Industrial Microbiology & Biotechnology, 2008, 35(7): 657-665.

[6] Wrona I E, Agouridas V, Panek J S. Design and synthesis of ansamycin antibiotics. Comptes Rendus Chimie, 2008, 11(11-12): 1483-1522.

[7] 张嗣良. 发酵过程多水平问题及其生物反应器装置技术研究——基于过程参数相关的发酵过程优化与放大技术. 中国工程科学, 2001, 3(8): 37-45. Zhang S L. Study on the fermentation process at multi-levels in bioreactor and aplication for special purposes——optimization and scaling up of the fermentation process based on the parameter correlation method. Engineering Science,2001,3:37-45.

[8] Zhang S, Chu J, Zhuang Y. A multi-scale study of industrial fermentation processes and their optimization. Adv Biochem Eng Biotechnol, 2004,87: 97-150.

[9] Hoffmann F, Schmidt M, Rinas U. Simple technique for simultaneous on-line estimation of biomass and acetate from base consumption and conductivity measurements in high-cell density cultures of Escherichia coli. Biotechnology and Bioengineering, 2000, 70(3): 358-361.

[10] Austin G D, Watson R W, D'Amore T. Studies of on-line viable yeast biomass with a capacitance biomass monitor. Biotechnology and Bioengineering, 1994, 43(4): 337-341.

[11] Krairak S, Yamamura K, Nakajima M, et al. On-line monitoring of fungal cell concentration by dielectric spectroscopy. Journal of Biotechnology, 1999, 69(2-3): 115-123.

[12] Cannizzaro C, Gugerli R, Marison I, et al. On-line biomass monitoring of CHO perfusion culture with scanning dielectric spectroscopy. Biotechnology and Bioengineering, 2003, 84(5): 597-610.

[13] Markx G H, Ten H H, Meijer J J, et al. Dielectric spectroscopy as a novel and convenient tool for the study of the shear sensitivity of plant cells in suspension culture. J Biotechnol, 1991, 19(2-3): 145-157.

[14] 王萍,王泽建,张嗣良. 生理代谢参数 RQ 在指导发酵过程优化中的应用. 中国生物工程杂志, 2013, 33(2): 88-95. Wang P, Wang Z J, Zhang S L. Fermentation optimization directed by physiological parameter respiratory quotient. China Biotechnology, 2013, 33(2): 88-95.

[1] 栗波,王泽建,梁剑光,刘爱军,李海东. 等离子体作用结合氧限制模型选育利福霉素SV高产菌株 *[J]. 中国生物工程杂志, 2021, 41(2/3): 38-44.
[2] 姚韧辉, 董卓, 李会. Gibberella intermedia C2转化4-雄甾烯-3、17-二酮的研究[J]. 中国生物工程杂志, 2017, 37(3): 73-77.
[3] 康国凯, 冯国栋, 曹坤琳, 陈正军, 葛向阳. 重组毕赤酵母(Pichia pastoris)高产Lunasin的发酵工艺优化[J]. 中国生物工程杂志, 2016, 36(8): 73-79.
[4] 李兰, 王泽建, 金勇, 孙文华, 庄英萍, 张嗣良. 电容法在线测定发酵过程中毕赤酵母浓度的研究[J]. 中国生物工程杂志, 2014, 34(3): 91-95.
[5] 刘会影, 薛冬桦, 潘安龙, 徐洪章, 叶小金, 孙国英. 微生物油脂酯化工艺优化[J]. 中国生物工程杂志, 2013, 33(3): 92-98.