Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (10): 67-72    DOI: 10.13523/j.cb.20141011
技术与方法     
重组腺相关病毒小鼠骨骼肌中近红外荧光蛋白表达及活体成像
田婷1,2,3, 昌剑2, 张欣2, 姜琛昱2, 张运海2, 刘晓玫2, 张春2
1. 中国科学院长春光学精密机械与物理研究所 长春 130033;
2. 中国科学院苏州生物医学工程技术研究所 苏州 215163;
3. 中国科学院大学 北京 100049
In Vivo Imaging of Near-infrared Fluorescent Protein in Skeletal Muscle of Mice Mediated by Recombinant Adeno-associated Virus
TIAN Ting1,2,3, CHANG Jian2, ZHANG Xin2, JIANG Chen-yu2, ZHANG Yun-hai2, LIU Xiao-mei2, ZHANG Chun2
1. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China;
2. Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China;
3. University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(1434 KB)   HTML
摘要:

近红外荧光蛋白因激发光和发射光波长位于近红外区,在动物组织中光吸收和光散射最低,更适宜于动物活体组织的深层成像.构建了一种携带近红外荧光蛋白(near-infrared fluorescent protein,iRFP)713基因的重组表达质粒pAAV-iRFP713,将重组表达质粒与辅助质粒共转染AAV-293细胞,包装重组腺相关病毒(recombinant adeno-associated virus,rAAV)rAAV-iRFP713.重组腺相关病毒表达载体感染体外培养的癌细胞,48h后,荧光显微镜检测显示近红外荧光蛋白在癌细胞中高效表达,荧光明亮.重组腺相关病毒表达载体注射小鼠骨骼肌,48h后,用近红外荧光活体成像系统检测证明近红外荧光蛋白在小鼠骨骼肌中表达较强, 活体组织成像清晰.实验结果表明近红外荧光蛋白在体内体外均能很好地表达并荧光成像,为动物活体组织标记和成像的研究提供新方法.

关键词: 腺相关病毒活体成像近红外荧光蛋白基因表达分子标记    
Abstract:

Near-infrared fluorescent protein (iRFP) which effectively reduces light absorption and scattering in animal tissues is suitable for living animal deep tissue imaging. Eukaryotic expression vector, pAAV-iRFP713, near-infrared fluorescent protein 713 (iRFP) was constructed. Recombinant adeno-associated virus, rAAV-iRFP713, was packaged. In vitro infection of cancer cells with rAAV-iRFP713 resulted in the strong expression of near-infrared fluorescent protein after 48h. rAAV-iRFP713 was injected into skeletal muscle of mice. Strong in vivo fluorescence signal was detected with the infrared fluorescence imaging system 48h after injection of rAAV-iRFP713. The results suggest that rAAV could deliver near-infrared fluorescent reporter gene in vitro and in vivo and iRFPs might be favorable fluorescent molecular labeling agents for living dynamic animal imaging.

Key words: Adeno-associated virus    Living tissue imaging    Near-infrared fluorescent protein    Gene expression    Fluorescent molecular labeling
收稿日期: 2014-08-12 出版日期: 2014-10-25
ZTFLH:  Q786  
基金资助:

江苏省自然科学青年基金(BK20140381)、苏州市科技计划项目(ZXY201432)资助项目

通讯作者: 刘晓玫,张春     E-mail: lxmdou@126.com;chunzhang@sibet.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

田婷, 昌剑, 张欣, 姜琛昱, 张运海, 刘晓玫, 张春. 重组腺相关病毒小鼠骨骼肌中近红外荧光蛋白表达及活体成像[J]. 中国生物工程杂志, 2014, 34(10): 67-72.

TIAN Ting, CHANG Jian, ZHANG Xin, JIANG Chen-yu, ZHANG Yun-hai, LIU Xiao-mei, ZHANG Chun. In Vivo Imaging of Near-infrared Fluorescent Protein in Skeletal Muscle of Mice Mediated by Recombinant Adeno-associated Virus. China Biotechnology, 2014, 34(10): 67-72.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20141011        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I10/67


[1] Shimomura O, Johnson F H, Saiga Y. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol, 1962,59:223-239.

[2] Prasher D C, Eckenrode V K, Ward W W, et al. Primary structure of the Aequorea-Victoria Green-Fluorescent Protein. Gene, 1992,111(2):229-233.

[3] Chalfie M, Tu Y, Euskirchen G, et al. Green fluorescent protein as a marker for gene-expression. Science, 1994,263(5148):802-805.

[4] Heim R, Prasher D C, Tsien R Y. Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proceedings of the National Academy of Sciences of the United States of America, 1994,91(26):12501-12504.

[5] Heim R, Cubitt A B, Tsien R Y. Improved Green Fluorescence. Nature, 1995,373(6516):663-664.

[6] Wachter R M, King B A, Heim R, et al. Crystal structure and photodynamic behavior of the blue emission variant Y66H/Y145F of green fluorescent protein. Biochemistry, 1997,36(32):9759-9765.

[7] Matz M V. Fluorescent proteins from nonbioluminescent Anthozoa species. Nature Biotechnology, 1999,17(12):1227-1227.

[8] Shu X K, Royant A, Lin M Z, et al. Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome. Science, 2009,324(5928):804-807.

[9] Filonov G S, Piatkevich K D, Ting L M, et al. Bright and stable near-infrared fluorescent protein for in vivo imaging. Nat Biotechnol, 2011,29(8):757-761.

[10] Shcherbakova D M, Verkhusha V V. Near-infrared fluorescent proteins for multicolor in vivo imaging. Nat Methods, 2013,10(8):751-754.

[11] Condeelis J, Weissleder R. In vivo imaging in cancer. Cold Spring Harbor Perspectives in Biology, 2010,2(12):a003848.

[12] Graves E E, Weissleder R, Ntziachristos V. Fluorescence molecular imaging of small animal tumor models. Current Molecular Medicine, 2004,4(4):419-430.

[13] Hoffman R M. Green fluorescent protein imaging of tumour growth, metastasis, and angiogenesis in mouse models. Lancet Oncology, 2002,3(9):546-556.

[14] Krumholz A, Shcherbakova D M, Xia J, et al. Multicontrast photoacoustic in vivo imaging using near-infrared fluorescent proteins. Sci Rep, 2014,4:3939.

[15] Shcherbakova D M, Verkhusha V V. Near-infrared fluorescent proteins for multicolor in vivo imaging. Nature Methods, 2013,10(8):751.

[16] Jiguet-Jiglaire C, Cayol M, Mathieu S, et al. Noninvasive near-infrared fluorescent protein-based imaging of tumor progression and metastases in deep organs and intraosseous tissues. Journal of Biomedical Optics, 2014,19(1):16019.

[17] Mai Thi Nhu TraN J T, Michito H, Yuka S, et al. In vivo image analysis using iRFP transgenic mice. Exp Anim, 2014,63(3):311-319.

[18] Lyons S K, Patrick P S, Brindle K M. Imaging mouse cancer models in vivo using reporter transgenes. Cold Spring Harb Protoc, 2013,2013(8):685-699.

[19] Piatkevich K D, Subach F V, Verkhusha V V. Far-red light photoactivatable near-infrared fluorescent proteins engineered from a bacterial phytochrome. Nature Communications, 2013,4:2153.

[20] Filonov G S, Verkhusha V V. A Near-Infrared BiFC reporter for In vivo imaging of protein-protein interactions. Chemistry & Biology, 2013,20(8):1078-1086.

[21] Shaner N C, Steinbach P A, Tsien R Y. A guide to choosing fluorescent proteins. Nature Methods, 2005,2(12):905-909.

[22] Lecoq J,Schnitzer M J. An infrared fluorescent protein for deeper imaging. Nature Biotechnology, 2011,29(8):715-716.

[23] Henckaerts E, Linden R M. Adeno-associated virus: a key to the human genome? Future Virology, 2010,5(5):555-574.

[24] Recchia A, Perani L, Sartori D, et al. Site-specific integration in human somatic cell DNA by adeno/AAV hybrid vectors. Molecular Therapy, 2004,9:S25-S26.

[1] 王聪,李秀,牛苗,戴阳光,董哲岳,董小岩,余双庆,杨怡姝. 基于TCID50检测AAV9载体制品感染性滴度的方法[J]. 中国生物工程杂志, 2021, 41(10): 28-32.
[2] 蒋丹丹,王云龙,李玉林,张怡青. 含RGD修饰的病毒样颗粒递送ICG靶向肿瘤的研究 *[J]. 中国生物工程杂志, 2020, 40(7): 22-29.
[3] 唐健雪,肖永乐,彭俊杰,赵世纪,万小平,高荣. 融合抗菌肽基因在重组毕赤酵母的表达及体外活性研究 *[J]. 中国生物工程杂志, 2018, 38(6): 9-16.
[4] 庄旻敏,贾晓会,施定基,朱嘉诚,冯思豫,何培民,贾睿. 转基因聚球藻7942中vp28基因表达效率及其光合特性分析[J]. 中国生物工程杂志, 2018, 38(4): 30-37.
[5] 姚立鹏,葛炜,胡英君,骆海燕,吴珊珊,林飞蕾,郭俊明. 环状RNA的结构和功能特性及其与胃癌发生的关系 *[J]. 中国生物工程杂志, 2018, 38(2): 82-88.
[6] 张艳芳, 孙瑞芬, 郭树春, 侯建华. 向日葵V-ATPase a3亚基基因的克隆及表达分析[J]. 中国生物工程杂志, 2017, 37(5): 19-27.
[7] 明金玉, 李化丹, 梁士博, 何莉, 于青含, 李集临, 张延明. 植物功能性靶向基因标记的研究进展[J]. 中国生物工程杂志, 2017, 37(3): 83-91.
[8] 项丽, 王申, 田海山, 钟美娟, 周汝滨, 曹定国, 梁朋, 张国平, 何滔, 庞实锋. 小鼠c-Myc基因的克隆表达及其纯化[J]. 中国生物工程杂志, 2017, 37(2): 20-25.
[9] 王曦光, 王娟, 张琳. 拟南芥蛋白质丰度与基因翻译效率关联分析[J]. 中国生物工程杂志, 2017, 37(2): 40-47.
[10] 栗晓飞, 曹英秀, 宋浩. CRISPR/Cas9系统研究进展[J]. 中国生物工程杂志, 2017, 37(10): 86-92.
[11] 史利平, 季静, 王罡, 金超, 谢超, 杜希龙, 关春峰, 张烈, 李辰. 盐胁迫条件下玉米萜类合成相关基因的表达分析[J]. 中国生物工程杂志, 2016, 36(8): 31-37.
[12] 李达, 代鹏, 王伟, 张文涛, 汪钦, 束毅, 祝春来, 纪奇峰, 梁平, 颜真. PLCE1基因及rs2274223和rs3765524单体型的克隆与表达[J]. 中国生物工程杂志, 2016, 36(12): 1-7.
[13] 孙瑞芬, 张艳芳, 郭树春, 于海峰, 李素萍, 乔慧蕾, 聂惠, 安玉麟. 向日葵ACC氧化酶基因(HaACO1)的克隆及表达分析[J]. 中国生物工程杂志, 2015, 35(9): 21-27.
[14] 查代明, 张炳火, 李汉全, 闫云君. 假单胞菌属脂肪酶的分子生物学研究进展[J]. 中国生物工程杂志, 2015, 35(9): 114-121.
[15] 徐登安, 赵纯钦, 张赤红, 陈静. 大麦水孔蛋白基因HvTIP2;1及其启动子的表达特性分析[J]. 中国生物工程杂志, 2015, 35(7): 15-21.