
RF克隆结合巢式PCR构建金黄色葡萄球菌组氨酸蛋白激酶AgrC表达载体
陆路, 熊文, 张钰琨, 王丽娜, 权春善, 范圣第
中国生物工程杂志 ›› 2014, Vol. 34 ›› Issue (10) : 55-60.
RF克隆结合巢式PCR构建金黄色葡萄球菌组氨酸蛋白激酶AgrC表达载体
Expression Vector Construction of Staphylococcus aureus Histidine Kinase AgrC Based on RF Cloning Combined with Nested PCR
AgrC蛋白是位于金黄色葡萄球菌细胞膜上的组氨酸激酶,能够感受细胞外的化学信号并将信号传递到细胞内,进而调控细胞内与致病性相关的一系列基因的表达.利用无限制克隆法(RF克隆),并结合巢式PCR成功构建了AgrC表达载体pET-28a-AgrC.将表达载体电转入大肠杆菌中,并利用IPTG进行诱导表达AgrC蛋白.再经过低温超高压破碎、超高速离心、金属螯合层析与尺寸排阻层析等过程,分离纯化得到AgrC蛋白.
AgrC is a membrane-embedded histidine kinase of Staphylococcus aureus that is thought to act as a sensor for the recognition of environmental signals and the transduction of signals into the cytoplasm so as to regulate and control a series of related pathogenic gene expression. Restriction-Free cloning and Nested PCR were used to construct an expression vector of pET-28a-AgrC successfully. Then, expression vector pET-28a-AgrC was transformed into E.coli C43 (DE3), and then, IPTG was added to induce expression. The expressed AgrC protein with a C-terminal His-tagged was purified using immobilized metal affinity chromatography (IMAC) and size exclusion chromatography (SEC). SDS-PAGE test showed that AgrC proteins were successfully separated and purified.
金黄色葡萄球菌 / AgrC / 无限制克隆法 / 巢式PCR {{custom_keyword}} /
Staphylococcus aureus / AgrC / Restriction-Free cloning / Nested PCR {{custom_keyword}} /
[1] Lowy F D. Staphylococcus aureus infections. New England Journal of Medicine, 1998, 339(8): 520-532.
[2] Henke J M, Bassler B L. Bacterial social engagements. Trends in Cell Biology, 2004, 14(11): 648-656.
[3] Chambers H F, Deleo F R. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nature Reviews Microbiology, 2009, 7(9): 629-641.
[4] Winzer K, Williams P. Quorum sensing and the regulation of virulence gene expression in pathogenic bacteria. International Journal of Medical Microbiology, 2001, 291(2): 131-143.
[5] Lyon G J, Wright J S, Christopoulos A, et al. Reversible and specific extracellular antagonism of receptor-histidine kinase signaling. Journal of Biological Chemistry, 2002, 277(8): 6247-6253.
[6] Novick R P, Ross H F, Projan S J, et al. Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. The EMBO Journal, 1993, 12(10): 3967.
[7] Hata K, Osaki M, Dhar D K, et al. Evaluation of the antiangiogenic effect of taxol in a human epithelial ovarian carcinoma cell line. Cancer Chemotherapy and Pharmacology, 2004, 53(1): 68-74.
[8] Van Den Ent F, Löwe J. RF cloning: a restriction-free method for inserting target genes into plasmids. Journal of Biochemical and Biophysical Methods, 2006, 67(1): 67-74.
[9] Unger T, Jacobovitch Y, Dantes A, et al. Applications of the Restriction Free (RF) cloning procedure for molecular manipulations and protein expression. Journal of Structural Biology, 2010, 172(1): 34-44.
[10] Chacó
n J L, Ferreira A J. Development and validation of nested-PCR for the diagnosis of clinical and subclinical infectious laryngotracheitis. Journal of Virological Methods, 2008, 151(2): 188-193.
[11] Wang L, Quan C, Liu B, et al. Green fluorescent protein (GFP)-based overexpression screening and characterization of AgrC, a receptor protein of quorum sensing in Staphylococcus aureus. International Journal of Molecular Sciences, 2013, 14(9): 18470-18487.
[12] Gordon C P, Williams P, Chan W C. Attenuating Staphylococcus aureus virulence gene regulation: A medicinal chemistry perspective. Journal of Medicinal Chemistry, 2013, 56(4): 1389-1404.
[13] Gotoh Y, Eguchi Y, Watanabe T, et al. Two-component signal transduction as potential drug targets in pathogenic bacteria. Current Opinion in Microbiology, 2010, 13(2): 232-239.
[14] Peleg Y, Unger T. Application of the Restriction-Free (RF) cloning for multicomponents assembly. Methods in Molecular Biology, 2014, 1116:73-87.
/
〈 |
|
〉 |