Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (7): 63-68    DOI: 10.13523/j.cb.20140710
综述     
基因印记与lncRNA
邱家俊, 颜景斌
上海市儿童医院 上海医学遗传研究所 上海交通大学附属儿童医院 卫生部医学胚胎分子生物学重点实验室 上海市胚胎与生殖工程重点实验室 上海 200040
Genomic Imprinting and Long Noncoding RNA
QIU Jia-Jun, YAN Jing-Bin
Shanghai Chlidren's Hospital, Shanghai Institute of Medical Genetics, Shanghai JiaoTong University, Key Laboratory of Embryo Molecular Biology, Ministry of Health, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
 全文: PDF(431 KB)   HTML
摘要:

基因印记是一种表观遗传调控机制,在二倍体哺乳动物的发育过程中,基因印记可以调控来自亲代的等位基因差异表达。非编码RNA是不编码蛋白质的RNA,它在RNA水平调控基因表达。研究表明大多数印记基因中存在长非编码RNA(长度>200nt的非编码RNA)的转录,长非编码RNA主要通过顺式的转录干扰作用来实现基因印记。同时基因印记及其相关的长非编码RNA异常表达与许多先天疾病相关,迄今已发现数十种人类遗传疾病与基因印记有关,而lncRNA引起的基因印记在疾病的发生和治疗中起着重要作用。

关键词: 基因印记长非编码RNA疾病    
Abstract:

Genomic imprinting is a kind of epigenetic mechanism, which affects monoallelic parent-of-origin-specific expression in mammal's development. Noncoding RNA (ncRNA) is a polynucleotides that does not code protein, it can regulate gene transcription. At least one non-coding RNA transcript is existed in most of the imprinted loci and genomic imprinting is mainly regulated by lang-non-coding RNA which the length is longer than 200nt, through cis-transcriptional interference. Aberrant expression of imprinting gene and related lncRNA are the cause of some congenital diseases. So far, dozens of genetic imprinting is found to be related with human genetic diseases, in which genomic imprinting regulated by lncRNA plays an important role in the occurrence and treatment. The regulation disscussed mechanism of the genomic imprinting by lncRNA and its related diseases.

Key words: Genomic imprinting    Long nocoding RNA    Diseases
收稿日期: 2014-04-23 出版日期: 2014-07-25
ZTFLH:  Q52  
基金资助:

上海市科委基础研究重点资助项目(11JC1411000)

通讯作者: 颜景斌     E-mail: yanjingbin0130@hotmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

邱家俊, 颜景斌. 基因印记与lncRNA[J]. 中国生物工程杂志, 2014, 34(7): 63-68.

QIU Jia-Jun, YAN Jing-Bin. Genomic Imprinting and Long Noncoding RNA. China Biotechnology, 2014, 34(7): 63-68.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20140710        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I7/63


[1] Surani M A, Barton S C, Norris M L. Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature, 1984, 308(5959):548-550.

[2] McGrath J, Solter D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell, 1984, 37(1):179-183.

[3] Barlow D P. Genomic imprinting: a mammalian epigenetic discovery model. Annu Rev Genet, 2011, 45:379-403.

[4] Fedoriw A, Mugford J, Magnuson T. Genomic imprinting and epigenetic control of development. Cold Spring Harb Perspect Biol, 2012, 4(7):a008136.

[5] Derrien T, Johnson R, Bussotti G, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res, 2012, 22(9):1775-1789.

[6] Wilusz J E, Sunwoo H, Spector D L. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev, 2009, 23(13):1494-1504.

[7] Pauli A, Rinn J L, Schier A F. Non-coding RNAs as regulators of embryogenesis. Nat Rev Genet, 2011, 12(2):136-149.

[8] Collins F S,Lander E S,Rogers J, et al. Finishing the euchromatic sequence of the human genome. Nature, 2004, 431(7011):931-945.

[9] Kung J T, Colognori D, Lee J T, et al. Long Noncoding RNAs: Past, Present, and Future. Genetics, 2013, 193(3):651-669.

[10] Fire A, Xu S, Montgomery M K, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998, 391(6669):806-811.

[11] Lee R C, Feinbaum R L, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75(5):843-854.

[12] Okazaki Y, Furuno M, Kasukawa T, et al. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature, 2002, 420(6915):563-573.

[13] Lee J T, Bartolomei M S. X-inactivation, imprinting, and long noncoding RNAs in health and disease. Cell, 2013, 152(6):1308-1323.

[14] Kornienko A E, Guenzl P M, Barlow D P, et al. Gene regulation by the act of long non-coding RNA transcription. BMC Biol, 2013, 11:59.

[15] Bumgarner S L, Dowell R D, Grisafi P, et al. Toggle involving cis-interfering noncoding RNAs controls variegated gene expression in yeast. Proc Natl Acad Sci U S A. 2009, 106(43):18321-18326.

[16] Lee J S, Shilatifard A. A site to remember: H3K36 methylation a mark for histone deacetylation. Mutat Res, 2007, 618(1-2):130-134.

[17] Bannister A J, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res, 2011, 21(3):381-395.

[18] Brookes E, Pombo A. Modifications of RNA polymerase II are pivotal in regulating gene expression states. EMBO Rep, 2009, 10(11):1213-1219.

[19] Ehrensberger A H, Svejstrup J Q. Reprogramming chromatin. Crit Rev Biochem Mol Biol, 2012, 47(5): 464-482.

[20] van Werven F J, Neuert G, Hendrick N, et al. Transcription of two long noncoding RNAs mediates mating-type control of gameto genesis in budding yeast. Cell, 2012, 150(6):1170-1181.

[21] Houseley J, Rubbi L, Grunstein M, et al. ncRNA modulates histone modification and mRNA induction in the yeast GAL gene cluster. Mol Cell, 2008, 32(5):685-695.

[22] Li B, Carey M, Workman J L. The role of chromatin during transcription. Cell, 2007, 128(4):707-719.

[23] Deaton A M, Bird A. CpG islands and the regulation of transcription. Genes Dev, 2011, 25(10):1010-1022.

[24] Tufarelli C, Stanley J A, Garrick D, et al. Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease. Nat Genet, 2003, 34(2):157-165.

[25] Hobson D J, Wei W, Steinmetz L M, et al. RNA polymerase II collision interrupts convergent transcription. Mol Cell, 2012, 48(3):365-374.

[26] 程婷婷, 徐刚毅. 基因印记的功能及应用. 生命的化学, 2007, 27(5):402-404. Chen T T, Xu G Y. Functions and applications of genomic imprinting. Chemistry of Life, 2007, 27(5):402-404.

[27] Dykens E M, Lee E, Roof E. Prader-Willi syndrome and autism spectrum disorders: an evolving story. J Neurodev Disord, 2011, 3(3):225-237

[28] Cassidy S B, Schwartz S, Miller J L, et al. Prader-Willi syndrome. Genet Med, 2012, 14(1):10-26.

[29] 谢小虎, 周文华. 基因组印记与疾病研究进展. 生命科学, 2008, 20(3):438-441. Xie X H, Zhou W H. Genomic imprinting and disease. Chinese Bulletin of Life Sciences, 2008, 20(3):438-441.

[30] Kishore S, Stamm S. The snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 2C. Science, 2006, 311(5758):230-232.

[31] Zhang Z, Falaleeva M, Agranat-Tamir L, et al. The 5' untranslated region of the serotonin receptor 2C pre-mRNA generates miRNAs and is expressed in non-neuronal cells. Exp Brain Res, 2013, 230(4):387-394.

[32] Falaleeva M, Sulsona C R, Zielke H R, et al. Molecular characterization of a patient presumed to have prader-willi syndrome. Clin Med Insights Case Rep, 2013, 6:79-86.

[33] Weksberg R, Shen D R, Fei Y L, et al. Disruption of insulin-like growth factor 2 imprinting in Beckwith-Wiede-mann syndrome. Nat Genet, 1993, 5(2):143-150.

[34] Ogawa O, Eccles M R, Szeto J, et al. Relaxation of insulin-like growth factor II gene imprinting implicated in Wilms’tumour. Nature, 1993, 362(6422):749-751.

[35] Rainier S, Johnson L A, Dobry C J, et al. Relaxation of imprinted genes in human cancer. Nature, 1993, 362:747-749.

[36] Weksberg R, Shuman C, Smith A C. Beckwith-Wiedemann syndrome. Am J Med Genet C Semin Med Genet, 2005, 137C(1):12-23.

[37] Hark A T, Tilghman S M. Chromatin conformation of the H19 epigenetic mark. Hum Mol Genet, 1998, 7(12):1979-1985.

[38] Bliek J, Maas S M, Ruijter J M, et al. Increased tumour risks for BWS patients correlates with aberrant H19 and not KCNQ1OT1 hypomethylation in familial cases of BWS. Hum Mol Gen, 2001, 10(5):467-476.

[39] Li M, Squire J, Shuman C, et al. Imprinting status of 11p15 genes in Beck-with-Wiedemann syndrome patients with CDKN1C mutations. Genomics, 2001, 74(3):370-376.

[40] Sun F L, Dean W L, Kelsey G, et al. Transactivation of Igf2 in a mouse model of Beckwith-Wiedemann syndrome. Nature, 1997, 389(6653):809-815.

[41] Sparago A, Cerrato F, Vernucci M, et al. Microdeletions in the human H19 DMR result in loss of IGF2 imprinting and Beckwith-Wiede-mann syndrome. Nat Genet, 2004, 36(9):958-960.

[42] Lee M P, Hu R J, Johnson L A, et al. Human KVLQT1 gene shows tissue-specific imprinting and encompasses Beckwith-Wiedemann syndrome chromosomal rear-rangements. Nat Genet, 1997, 15(2):181-185.

[43] Pandey R R, Mondal T, Mohammad F, et al. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell, 2008; 32(2):232-246.

[44] Terranova R, Yokobayashi S, Stadler M B, et al. Polycomb group proteins Ezh2 and Rnf2 direct genomic contraction and imprinted repression in early mouse embryos. Dev Cell, 2008, 15(5):668-679.

[45] Umlauf D, Goto Y, Cao R, et al. Imprinting along the Kcnq1 domain on mouse chromosome 7 involves repressive histone methylation and recruitment of Polycomb group complexes. Nat Genet, 2004, 36(12):1296-1300.

[46] Lewis A, Mitsuya K, Umlauf D, et al. Imprinting on distal chromosome 7 in the placenta involves repressive histone methylation independent of DNA methylation. Nat Genet, 2004, 36(12):1291-1295.

[47] Kanduri C. Kcnq1ot1 A chromatin regulatory RNA. Semin Cell Dev Biol, 2011, 22(4):343-350.

[48] Weksberg R, Shuman C, Smith A C. Beckwith-Wiedemann syndrome. Am J Med Genet C Semin Med Genet, 2005, 137C(1):12-23.

[49] Jiang J, Jing Y, Cost G J, et al. Translating dosage compensation to trisomy 21. Nature, 2013, 500(7462):296-300.

[1] 谈沛林,张莹,张竣,高笑,王树坤,侯琳,袁增强. 二甲双胍(Metformin)在少突胶质前体细胞分化中的作用和机制*[J]. 中国生物工程杂志, 2021, 41(9): 1-9.
[2] 朱嘉豪,陈婷,习欠云. miR-146a参与不同疾病的研究进展*[J]. 中国生物工程杂志, 2021, 41(9): 64-70.
[3] 董雪迎,梁凯,叶克应,周策凡,唐景峰. 受体酪氨酸激酶对自噬的调控及其研究进展*[J]. 中国生物工程杂志, 2021, 41(5): 72-78.
[4] 原博,王杰文,康广博,黄鹤. 双特异性纳米抗体的研究进展及其应用 *[J]. 中国生物工程杂志, 2021, 41(2/3): 78-88.
[5] 唐德平,邢梦洁,宋文涛,姚慧慧,毛爱红. microRNA治疗在癌症及其他疾病中的研究进展*[J]. 中国生物工程杂志, 2021, 41(11): 64-73.
[6] 张莹,孔祥熙,侯琳,王树坤,袁增强. Ozanimod(RPC1063)在少突胶质前体细胞分化中的作用和机制 *[J]. 中国生物工程杂志, 2020, 40(6): 10-19.
[7] 刘迪,张洪春. 慢性阻塞性肺疾病基因工程动物模型研究进展 *[J]. 中国生物工程杂志, 2020, 40(4): 59-68.
[8] 杨丹,田海山,李校堃. 成纤维细胞生长因子5的研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 117-124.
[9] 王伟东,杜加茹,张运尚,樊剑鸣. CRISPR/Cas9在人病毒感染相关疾病治疗研究中的应用*[J]. 中国生物工程杂志, 2020, 40(12): 18-24.
[10] 梅雅贤,王玥,罗文新. 纳米抗体在传染病的预防、诊断和治疗中的应用 *[J]. 中国生物工程杂志, 2020, 40(10): 24-34.
[11] 朱颖,范梦恬,李具琼,陈彬,张盟浩,吴静红,施琼. 趋化因子受体CX3CR1调控人主动脉瓣膜间质细胞成骨分化的作用研究 *[J]. 中国生物工程杂志, 2019, 39(8): 7-16.
[12] 杨春艳,王磊,穆登彩,李芳芳,沈昊,郑尚永. 基因编辑技术在疾病治疗中的研究进展 *[J]. 中国生物工程杂志, 2019, 39(11): 87-95.
[13] 徐然,陈松. CRISPR/Cas9运输系统的研究进展及其在基因相关疾病方面的应用 *[J]. 中国生物工程杂志, 2018, 38(3): 81-88.
[14] 戈家傲,刘畅,龚建刚,刘艳琴. 抗菌环肽的研究进展 *[J]. 中国生物工程杂志, 2018, 38(11): 76-83.
[15] 李莉莉, 魏琦岩, 王艳芳, 何忠梅, 郜玉刚, 马吉胜. FGF/FGFR信号调控成骨细胞分化的研究进展[J]. 中国生物工程杂志, 2017, 37(6): 107-113.