Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (7): 56-62    DOI: 10.13523/j.cb.20140709
技术与方法     
基因组重排技术选育乙醇高产菌株
黄俊1,2,3, 黎贞崇3, 吴仁智3, 陈英1,2,3, 陈东1,2,3, 黄日波1,2,3
1. 广西大学亚热带农业生物资源保护与利用国家重点实验室 南宁 530005;
2. 广西大学生命科学与技术学院 南宁 530005;
3. 广西科学院国家非粮生物质能源研究工程中心 南宁 530007
Screening and Breeding of high Ethanol-producing Strains by Genome Shuffling
HUANG Jun1,2, WU Ren-zhi3, CHEN Ying1,2,3, LU Zhi-long3, CHEN Xiao-ling3, CHEN Dong1,2,3, HUANG Ri-bo1,2,3
1. State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning 530005, China;
2. College of Science and Technology, Guangxi University, Nanning 530005, China;
3. National Non-grain Bio-energy Engineering Research Center, Nanning 530007, China
 全文: PDF(660 KB)   HTML
摘要:

里氏木霉(Trichoderma reesei)被认为是最合适联合生物加工(consolidated bioprocessing)的微生物之一。原始里氏木霉菌株产乙醇能力太低,需要进一步提高其产酒量。我们通过基因组重排技术提高了里氏木霉菌株产乙醇能力和乙醇耐受力。首先对CICC40360菌株孢子进行NTG诱变得到正向突变菌株,再以此为出发菌株进行基因组重排。进行基因组重排后,重组菌株在含不同乙醇浓度的原生质体再生培养基上进行筛选。突变菌株和原始菌株一起做摇瓶发酵实验进行比较以确定产乙醇能力的提高。经过两轮基因组重排后,筛选获得表现最优异的重组菌S2-254。该菌株能在利用50g/l葡萄糖发酵出6.2g/l乙醇,同时能耐受3.5% (v/v)浓度乙醇。上述结果表明,本实验采用的基因组重排技术能够有效而且快速获得具有目的性状的优良菌株。

关键词: 里氏木霉基因组重排联合生物加工    
Abstract:

Trichoderma reesei can be considered a candidate for consolidated bioprocessing (CBP) microorganism. However, its ethanol yield needs to be improved significantly. Here we improved the ethanol tolerance of a wild-type strain CICC40360 by genome shuffling while simultaneously enhancing the ethanol productivity. The starting population was generated by nitrosoguanidine treatment of the spores, and then subjected for the recursive genome shuffling. The positive colonies from the mutant library, created by genome shuffling were screened for growth on regeneration of protoplasts medium plates containing different concentrations of ethanol. Characterization of all mutants and wild-type strain in the shake-flask indicated the compatibility of ethanol yields enhancement. After two rounds of genome shuffling, the best performing strain, S2-254, was obtained. It was found capable of completely utilizing 50g/l glucose, producing 6.2g/l ethanol, and tolerating 3.5% (v/v) ethanol stress. The result demonstrates that this method was effective and easy to operate for the construction a recombinant strain with desired phenotypes in a short time.

Key words: Trichoderma reesei    Genome shuffling    Consolidated bioprocessing
收稿日期: 2014-05-26 出版日期: 2014-07-25
ZTFLH:  Q93  
基金资助:

纤维素乙醇清洁生产关键技术的引进与合作研究(2011DFA61910)

通讯作者: 黄日波     E-mail: rbhuang@gxas.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

黄俊, 黎贞崇, 吴仁智, 陈英, 陈东, 黄日波. 基因组重排技术选育乙醇高产菌株[J]. 中国生物工程杂志, 2014, 34(7): 56-62.

HUANG Jun, WU Ren-zhi, CHEN Ying, LU Zhi-long, CHEN Xiao-ling, CHEN Dong, HUANG Ri-bo. Screening and Breeding of high Ethanol-producing Strains by Genome Shuffling. China Biotechnology, 2014, 34(7): 56-62.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20140709        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I7/56


[1] 黄俊, 陈东, 黄日波. 纤维小体在燃料乙醇中的应用. 中国生物工程杂志, 2011, 31(1): 103-108. Huang J, Chen D, Huang R B. Research progress in cellulosome application in bio-ethanol. China biotechnology, 2011,31(1):103-108.

[2] 陈雅娟,董园,芦志龙,等. 碱性纤维素酶产生菌株的筛选及其酶学性质研究. 广西科学,2014,21(1): 28-33. Chen Y J, Dong Y, Lu Z L, et al. Screening of alkaline cellulose-producing strains and research on enzymatic characteristics. Guangxi sciences, 2014,21(1): 28-33.

[3] 蒋西然, 李文利. 纤维素乙醇基因工程研究进展. 中国生物工程杂志, 2009, 29(7): 127-133. Jiang X R, Li W L. Research progress in genetic engineering for cellulosic ethanol. China biotechnology, 2009, 29(7): 127-133.

[4] Lynd L R, Weimer PJ, Van Zyl W H, et al. Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and molecular biology reviews, 2002, 66(3): 506-577.

[5] Xu Q, Singh A, Himmel M E. Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose. Current Opinion in Biotechnology, 2009, 20(3): 364-371.

[6] Zhang Y X, Perry K, Vinci V A, et al. Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature, 2002, 415, 644-646.

[7] Hida H, Yamada T, and Yamada Y, Genome shuffling of Streptomyces sp. U121 for improved production of hydroxycitric acid. Appl. Microbiol. Biotechnol., 2007,73, 1387-1393.

[8] Patnaik R, Louie S, Gavrilovic V, et al. Genome shuffling of lactobacillus for improved acid tolerance. Nat. Biotechnol. 2002, 20, 707-712.

[9] Gruber F, Visser J, Kubicek C P, et al. The development of a heterologous transformation system for the cellulolytic fungus Trichoderma reesei based on a pyrGnegative mutant strain. Curr. Genet. 1990, 18, 71-76.

[10] Knapp J E, Chandlee J M. RNA/DNA mini-prep from a single sample of orchid tissue. Biotechniques, 1996, 21, 54-56.

[11] Xu F, Jin H, Li H, et al. Genome shuffling of Trichoderma viride for enhanced cellulase production. Ann Microbiol, 2012, 62(2): 509-515.

[12] Okamoto K, Imashiro K, Akizawa Y, et al. Production of ethanol by the white-rot basidiomycetes Peniophora cinerea and Trametes suaveolens. Biotechnol. Lett. 2010, 32, 909-913.

[13] de Almeida M N, Guimarães V M, Falkoski D L, et al. Direct ethanol production from glucose, xylose and sugarcane bagasse by the corn endophytic fungi Fusarium verticillioides and Acremonium zeae. J. Biotechnol., 2013,168, 71-77.

[14] Okamoto K, Nitta Y, Maekawa N, et al. Direct ethanol production from starch, wheat bran and rice straw by the white rot fungus Trametes hirsuta. Enzyme and microbial technology, 2011, 48(3): 273-277.

[15] Hedayatkhah A, Motamedi H, Najafzadeh V, Ghezelbash G et al. Improvement of hydrolysis and fermentation of sugarcane bagasse by soaking in aqueous ammonia and methanolic ammonia. Biosci. Biotechnol. Biochem, 2013, 77, 1379-1383.

[16] Imada C, Ikemoto Y, Kobayashi T, et al. Isolation and characterization of the interspecific fusants from Streptomycetes obtained using a liquid regeneration method. Fish. Sci. 2002,68,395-402.

[1] 徐晓, 程驰, 袁凯, 薛闯. 里氏木霉产纤维素酶研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 52-61.
[2] 焦思明,程功,张毓宸,冯翠,任立世,李建军,杜昱光. 里氏木霉几丁质酶表达及其水解产物组成与结构分析 *[J]. 中国生物工程杂志, 2018, 38(10): 30-37.
[3] 宋佳雯, 田苏, 张玉如, 王志珍, 常忠义, 高红亮, 步国建, 金明飞. 基因组重排筛选高产谷氨酰胺转胺酶菌株[J]. 中国生物工程杂志, 2017, 37(9): 105-111.
[4] 郑连宝, 裘娟萍. 基因组重排技术在开发新代谢产物中的应用[J]. 中国生物工程杂志, 2012, 32(03): 100-105.
[5] 卢圣国 李霜 朱建国 孟庆雄. 基因组重排技术应用与进展[J]. 中国生物工程杂志, 2010, 30(07): 0-0.
[6] 梁惠仪,郭勇. 全基因组重排育种技术提高产豆豉纤溶酶菌产酶量[J]. 中国生物工程杂志, 2007, 27(10): 39-43.
[7] 张超 刘刚 余少文 邢苗. 可直接克隆PCR产物的毕赤酵母分泌型表达载体[J]. 中国生物工程杂志, 2007, 27(1): 52-58.