Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (06): 98-104    DOI: 10.13523/j.cb.20140614
综述     
大肠杆菌I型分泌表达系统研究进展及提高蛋白表达量的策略
王靖瑶, 王天女, 卢磊, 张帅, 赵敏
东北林业大学生命科学学院 哈尔滨 150040
Research Advances in Secretary Production of Recombinant Protein Using Escherichia coli Type I Secretion System and Strategies for Enhancement of Secretion of Type I Pathway
WANG Jing-yao, WANG Tian-nv, LU Lei, ZHANG Shuai, ZHAO Min
College of Life Sciences, Northeast Forestry University, Harbin 150040, China
 全文: PDF(861 KB)   HTML
摘要:

大肠杆菌是表达重组蛋白最常用的宿主之一。利用大肠杆菌分泌途径胞外表达重组蛋白具有可促进蛋白正确折叠,有效减少包涵体形成,简化纯化工序等诸多优势,近年来备受关注。其中,大肠杆菌I型分泌途径具有分泌表达速度快,蛋白活性高,对宿主代谢无影响等特点,是目前应用最广泛的分泌途径之一。综述了大肠杆菌I型分泌系统的元件组成和分泌机理及提高I型分泌系统蛋白表达量的有效策略,为重组蛋白生产应用提供了理论依据。

关键词: 大肠杆菌胞外表达重组蛋白I型分泌途径高效分泌策略    
Abstract:

Escherichia coli is one of the most commonly used hosts for recombinant protein production. Extracellular protein expression in E. coli, which is favored by its improved correct folding of target protein, reduced formation of inclusion bodies and simplified purification process, is attracting increasing attention. Among all the secretion systems of E. coli, the type I secretion system has become one of the most popular secretion pathways due to its fast secretion speed, high expression ability and harmlessness to cell physiology. The components and mechanism of type I pathway of E. coli and efficient strategies for enhancing secretion efficiency of recombinant protein are summarized, which provides the theoretical basis for production of recombinant protein.

Key words: Escherichia coli    Extracellular expression    Recombinant protein    Type I secretion pathway    Efficient secretory strategy
收稿日期: 2014-03-31 出版日期: 2014-06-25
ZTFLH:  Q786  
基金资助:

国家自然科学基金资助项目(31170553,31200394)

通讯作者: 赵敏     E-mail: 82191513@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王靖瑶, 王天女, 卢磊, 张帅, 赵敏. 大肠杆菌I型分泌表达系统研究进展及提高蛋白表达量的策略[J]. 中国生物工程杂志, 2014, 34(06): 98-104.

WANG Jing-yao, WANG Tian-nv, LU Lei, ZHANG Shuai, ZHAO Min. Research Advances in Secretary Production of Recombinant Protein Using Escherichia coli Type I Secretion System and Strategies for Enhancement of Secretion of Type I Pathway. China Biotechnology, 2014, 34(06): 98-104.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20140614        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I06/98


[1] 何冰芳, 米兰, 陈文华. 大肠杆菌蛋白质分泌机理及其重组蛋白分泌表达新进展. 食品与生物技术学报, 2012, 31(6): 561-569. He B F, Mi L, Chen W H. The secretion mechanism of protein from E. coli and recent advancements of recombinant protein expression. J Food SCI Biotechnol, 2012, 31(6): 561-569.

[2] Ni Y, Chen R. Extracellular recombinant protein production from Escherichia coli. Biotechnol Lett, 2009, 31: 1661-1670.

[3] Yoon S H, Kim S K, Kim J F. Secretory production of recombinant proteins in Escherichia coli. Recent Pat Biotechnol, 2010, 4: 23-29.

[4] 訾祯祯, 杨志伟. 细菌蛋白分泌途径的研究进展. 生物技术通报, 2011, 8: 44-54. Zi Z Z, Yang Z W. Protein secretion pathways in bacterial cells. Biol Bull, 2011, 8: 44-54.

[5] Mergulho F J, Summers D K, Monteiro G A. Recombinant protein secretion in Escherichia coli. Biotechnol Adv, 2005, 23(3): 177-202.

[6] Badyakina A O, Nesmeyanova M A. Biogenesis and secretion of overproduced protein in recombinant strains of Escherichia coli. Process Biochem, 2005, 40: 509-518.

[7] Chen S, Liu Z, Chen J, et al. Study on improvement of extracellular production of recombinant Thermobifida fusca cutinase by Escherichia coli. Appl Biochem Biotechnol, 2011, 165: 666-675.

[8] Yamabhai M, Emrat S, Sukasem S, et al. Secretion of recombinant Bacillus hydrolytic enzymes using Escherichia coli expression systems. J Biotechnol, 2008, 133: 50-57.

[9] Delepelaire P. Type I secretion in gram-negative bacteria. Biochim Biophys Acta, 2004, 1694: 149-161.

[10] Holland I B, Schmitt L, Young J. Type I protein secretion in bacteria, the ABC-transporter dependent pathway. Mol Membr Biol, 2005, 22(1-2): 29-39.

[11] Koronakis V, Sharff A, Koronakis E, et al. Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature, 2000, 405: 914-919.

[12] Zaitseva J, Jenewein S, Oswald C, et al. A molecular understanding of the catalytic cycle of the nucleotide-binding domain of the ABC transporter HlyB. Biochem Soc Trans, 2005, 33: 990-995.

[13] Sanchez-Magraner L, Viguera A R, Garcia-Pacios M, et al. The calcium-binding C-terminal domain of Echerichia coli alpha-hemolysin is a major determinant in the surface-active properties of the protein. J Biol Chem, 2007, 282(16): 11827-11835.

[14] Ludwig A, Jarchau T, Benz R, et al. The repeat domain of Escherichia coli haemolysin (HlyA) is responsible for its Ca2+-dependent binding to erythrocytes. Mol Gen Genet, 1988, 214: 553-561.

[15] Jones H E, Holland I B, Campbell A K. Direct measurement of free Ca2+shows different regulation of Ca2+ between the periplasm and the cytosol of Escherichia coli. Cell Calcium, 2002, 32:183-192.

[16] Kanonenberg K, Schwarz Christian K W, Schmitt L. Type I secretion systems-a story of appendices. Res Microbiol, 2013, 3: 1-9.

[17] Gentschev I, Dietrich G, Goebel W. The E. coli α-hemolysin secretion system and its use in vaccine development. Trends Microbiol, 2002, 10(1): 39-45.

[18] Mohammadian M, Fathi-Roudsari M, Mollania N, et al. Enhanced expression of a recombinant bacterial laccase at low temperature and microaerobic conditions: purification and biochemical characterization. J Ind Microbiol Biotechnol, 2010, 37: 863-869.

[19] Martins L O, Soares C M, Pereira M M, et al. Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat. J Biol Chem, 2002, 277(21): 18849-18859.

[20] Fernandez L A, Sola I, Enjuanes L, et al. Specific secretion of active single-chain Fv antibodies into the supernatants of Escherichia coli cultures by use of the hemolysin system. Appl Environ Microbiol, 2000, 66(11): 5024-5029.

[21] Bisi D C, Lampe D J. Secretion of anti-Plasmodium effector proteins from a natural Pantoea agglomerans isolate by using pelB and hlyA secretion signals. Appl Environ Microbiol, 2011, 77(13): 4669-4675.

[22] Narayanan N, Khan M, Chou C P. Enhancing functional expression of heterologous lipase B in Escherichis coli by extracellular secretion. J Ind Microbiol Biotechnol, 2010, 37: 349-361.

[23] Gomez-duarte O G, Pasetti M, Santiago A, et al. Expression, extracellular secretion, and immunogenicity of the Plasmodium falciparum sporozoite surface protein 2 in Salmonella vaccine strains. Infect Immun, 2001, 69(2): 1192-1198.

[24] Sugamata Y, Shiba T. Improved secretory production of recombinant proteins by random mutagenesis of hlyB, an alpha-hemolysin transporter from Escherichia coli. Appl Environ Microbiol, 2005, 71(2): 656-662.

[25] Li Y, Chen C X, Specht B U, et al. Cloning and hemolysin-mediated secretory expression of a codon-optimized synthetic human interleukin-6 gene in Escherichia coli. Protein Expr Purif, 2002, 25: 437-447.

[26] 宁亚蕾, 周立雄, 张卫军, 等. 利用α-溶血素系统分泌表达重组人白介素. 免疫学杂志, 2008, 24(4): 380-384. Ning Y L, Zhou L X, Zhang W J, et al. Extracellular secretion of recombinant hIL-6 utlizing UPEC α-hemolysin (HlyA) system. J Immunol, 2008, 24(4): 380-384.

[27] Su L, Chen S, Yi L, et al. Extracellular overexpression of recombinant Thermobifida fusca cutinase by alpha-hemolysin secretion system in E. coli BL21(DE3). Microb Cell Fact, 2012, 11: 1-8.

[28] Low K O, Mahadi N M, Rahim R A, et al. Enhanced secretory production of hemolysin-mediated cyclodextrin glucanotransferase in Escherichia coli by random mutagenesis of the ABC transporter system. J Biotechnol, 2010, 150: 453-459.

[29] Low K O, Mahadi N M, Rahim R A, et al. An effective extracellular protein secretion by an ABC transporter system in Escherichia coli: statistical modeling and optimization of cyclodextrin glucanotransferase secretory production. J Ind Microbiol Biotechnol, 2011, 38: 1587-1597.

[30] 张兆山. 大肠杆菌α-溶血素分泌表达系统的构建及应用初探. 北京: 军事科学医学院生物工程研究所, 2004. Zhang Z S. Study of construction and application of the recombinant secretion plasmid based on α-hemolysin secretion system. Beijing: Institute of Biological Engineering of the Military Academy of Medical Sciences, 2004.

[31] Bakkes P J, Jenewein S, Smits S H, et al. The rate of folding dictates substrate secretion by the Escherichia coli hemolysin type I secretion system. J Biol Chem, 2010, 285(52): 40573-40580.

[32] Schwarz C K, Landsberg D, Lenders C, et al. Using an E. coli Type I secretion system to secrete the mammalian, intracellular protein IFABP in its active form. J Biotechnol, 2012, 159: 155-161.

[33] Jumpertz T, Chervaux C, Racher K, et al. Mutations affecting the extreme C terminus of Escherichia coli haemolysin A reduce haemolytic activity by altering the folding of the toxin. Microbiology, 2010, 156: 2495-2505.

[34] Kenny B, Chervaux C, Holland I B. Evidence that residues -15 to -46 of the haemolysin secretion signal are involved in early steps in secretion, leading to recognition of the translocator. Mol Microbiol, 1994, 11: 99-109.

[35] Kenny B, Haigh R, Holland I B. Analysis of the haemolysin transport process through the secretion from Escherichia coli of PCM, CAT or beta-galactosidase fused to the Hly C-terminal signal domain. Mol Microbiol, 1991, 5(10): 2557-2568.

[36] Pimenta A L, Young J, Holland I B, et al. Antibody analysis of the localisation, expression and stability of HlyD, the MF Pcomponent of the E. coli haemolysin translocator. Mol Gen Genet, 1999, 261: 122-132.

[37] Schulein R, Gentschev S, Schlor I, et al. Identification and characterization of two functional domains of the haemolysin translocator protein HlyD. Mol Gen Genet, 1994, 245: 203-211.

[38] Pimenta A L, Racher K, Jamieson L, et al. Mutations in HlyD, part of the type I translocator for hemolysin secretion, affect the folding of the secreted toxin. J Bacteriol, 2005, 187(21): 7471-7480.

[39] Blight M A, Pimenta A L, Lazzaroni J C, et al. Identification and preliminary characterization of temperature-sensitive mutations affecting HlyB, the translocator required for the secretion of haemolysin (HlyA) from Escherichia coli. Mol Gen Genet, 1994, 245: 431-440.

[40] Sheps J A, Cheung I, Ling V. Hemolysin transport in Escherichia coli point mutants in HlyB compensate for a deletion in the predicted amphiphilic helix region of the HlyA signal. J Biol Chem, 1995, 270 (24): 14829-14834.

[41] Lee P S, Lee K H. Engineering HlyA hypersecretion in Escherichia coli based on proteomic and microarray analyses. Biotechnol Bioeng, 2005, 89: 195-205.

[42] Prateek G, Kelvin H L. Silent mutations result in HlyA hypersecretion by reducing intracellular HlyA protein aggregates. Biotechnol Bioeng, 2008, 101(5): 967-974.

[43] Vakharia H, German G J, Misra R. Isolation and characterization of Escherichia coli tolC mutants defective in secreting enzymatically active alpha-hemolysin. J Bacteriol, 2001, 183(23): 6908-6916.

[44] Nakano H, Kawakami Y, Nishimura H. Secretion of genetically-engineered dihydrofolate reductase from Escherichia coli using an E. coli alpha-hemolysin membrane translocation system. Appl Microbiol Biotechnol, 1992, 37(6): 765-771.

[45] Herm-Gotz A, Agop-Nersesian C, Munter S, et al. Rapid control of protein level in the apicomplexan Toxoplasma gondii. Nat Methods, 2007, 4: 1003-1005.

[46] Armstrong C M, Goldberg D E. An FKBP destabilization domain modulates protein levels in Plasmodium falciparum. Nat Meth, 2007, 4: 1007-1009.

[47] Banaszynski L A, Chen L C, Maynard-Smith L A, et al. A rapid reversible, and tunable method to regulate protein function in living cells using synthetic small molecules. Cell, 2006, 126: 995-1004.

[48] Sørensen H P, Mortensen K K. Advanced genetic strategies for recombinant protein expression in Escherichia coli. J Biotechnol, 2005, 115: 113-128.

[1] 乔圣泰,王曼琦,徐慧妮. 番茄SlTpx原核表达蛋白的体外功能分析*[J]. 中国生物工程杂志, 2021, 41(8): 25-32.
[2] 何若昱,林福玉,高向东,刘金毅. 信号肽在大肠杆菌分泌系统中的研究与应用进展[J]. 中国生物工程杂志, 2021, 41(5): 87-93.
[3] 吴弘轩, 杨金花, 沈培杰, 李清晨, 黄建忠, 祁峰. 利用大肠杆菌细胞工厂生产吲哚-3-乙酸的研究 *[J]. 中国生物工程杂志, 2021, 41(1): 12-19.
[4] 闫伟欢,黄统,洪解放,马媛媛. 丁醇在大肠杆菌中的生物合成研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 69-76.
[5] 童梅,程永庆,刘金毅,徐晨. 促进大肠杆菌周质空间小分子抗体表达的菌种构建方法*[J]. 中国生物工程杂志, 2020, 40(5): 48-56.
[6] 杨丽,石晓宇,李文蕾,李剑,徐寒梅. 构建噬菌体展示抗体库过程中电穿孔法的条件优化[J]. 中国生物工程杂志, 2020, 40(4): 42-48.
[7] 乐易林,傅毓,倪黎,孙建中. 热稳定性丙酮酸:铁氧还蛋白氧化还原酶异源表达及其在乙酰辅酶A合成中的应用 *[J]. 中国生物工程杂志, 2020, 40(3): 72-78.
[8] 杭海英,刘春春,任丹丹. 流式细胞术的发展、应用及前景 *[J]. 中国生物工程杂志, 2019, 39(9): 68-83.
[9] 赵程程,孙长坡,常晓娇,伍松陵,林振泉. 大肠杆菌细胞裂解系统的构建及其在真菌毒素降解酶表达中的应用 *[J]. 中国生物工程杂志, 2019, 39(4): 69-77.
[10] 贺雪婷,张敏华,洪解放,马媛媛. 大肠杆菌丁醇耐受机制及耐受菌选育研究进展 *[J]. 中国生物工程杂志, 2018, 38(9): 81-87.
[11] 王佩, 陈凯, 高嵩. 利用CpG DNA甲基化酶M.Sss I共表达载体制备限制性内切酶Not I[J]. 中国生物工程杂志, 2017, 37(8): 51-58.
[12] 刘延娟, 李旭娟, 袁航, 刘娴, 高艳秀, 龚明, 邹竹荣. 融合酰基载体蛋白可增强大肠杆菌重组蛋白的可溶性和热稳定性[J]. 中国生物工程杂志, 2017, 37(7): 115-123.
[13] 林优红, 程霞英, 严依雯, 梁宗锁, 杨宗岐. 衣藻叶绿体表达重组蛋白及表达优化策略[J]. 中国生物工程杂志, 2017, 37(10): 118-125.
[14] 胡立强, 郑文, 钟艺, 杜丹, 杨浩, 龚萌. 抗病毒蛋白RC28在大肠杆菌和毕赤酵母中的表达及活性比较[J]. 中国生物工程杂志, 2017, 37(1): 14-20.
[15] 张宇萌, 童梅, 陆小冬, 米月, 莫婷, 刘金毅, 姚文兵. 大肠杆菌可溶性表达抗TNF-α Fab的工艺优化[J]. 中国生物工程杂志, 2016, 36(9): 31-37.