Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (06): 75-83    DOI: 10.13523/j.cb.20140611
综述     
纤维素酶在酿酒酵母中的表达研究
杨华军1, 邹少兰2, 刘成2, 马媛媛2, 马向霞3, 洪解放2
1. 天津大学化工学院 天津 300072;
2. 天津大学石化中心 天津 300072;
3. 天津市医药集团技术发展有限公司 天津 300193
Advance in Research on Cellulase Expression in Saccharomyces cerevisiae
YANG Hua-jun1, ZOU Shao-lan2, LIU Cheng2, MA Yuan-yuan2, MA Xiang-xia3, HONG Jie-fang2
1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;
2. Tianjin R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China;
3. Tianjin Pharmaceutical Tech-Development Co., Ltd., Tianjin 300193, China
 全文: PDF(485 KB)   HTML
摘要:

统合生物加工过程(Consolidated bioprocessing,CBP)具有应用于纤维素乙醇生产的潜力,而该技术的关键是构建能有效降解纤维素的工程菌株。酿酒酵母是传统的乙醇发酵菌株,作为CBP宿主菌株具有很多优势,因此在酿酒酵母中表达纤维素酶引起研究者的普遍关注。综述了纤维素酶基因在酿酒酵母中表达的影响因素,包括基因表达盒表达元件(启动子、信号肽和终止子等)、纤维素酶基因拷贝数及存在形式以及纤维素酶基因来源等,并对一种和多种纤维素酶基因在酿酒酵母中的表达及构建得到的CBP菌株研究进展做了简要介绍。

关键词: 纤维素酶统合生物加工酿酒酵母纤维素乙醇    
Abstract:

Consolidated bioprocessing (CBP) is a promising technology for lignocellulosic ethanol production, and the key to CBP is the engineering of a microorganism that can efficiently utilize cellulose. Saccharomyces cerevisiae is a traditional ethanol producing strain, and it has many advantages as the CBP host strains, so the expression of cellulase in S. cerevisiae is causing great interest. The factors that influence the expression of cellulase genes in S. cerevisiae, including gene expression cassette expression elements (promoter, signal peptide and terminator, etc.), cellulase gene copy number and existing forms, the sources of cellulase gene and so on were reviewed. In addition, research progress about one or more cellulase genes expressed in S. cerevisiae and the construction of CBP strains were briefly introduced.

Key words: Cellulase    Consolidated bioprocessing(CBP)    Saccharomyces cerevisiae    Cellulosic ethanol
收稿日期: 2014-03-15 出版日期: 2014-06-25
ZTFLH:  Q786  
基金资助:

国家自然科学基金资助项目(30900033)

通讯作者: 洪解放     E-mail: hjf@tju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

杨华军, 邹少兰, 刘成, 马媛媛, 马向霞, 洪解放. 纤维素酶在酿酒酵母中的表达研究[J]. 中国生物工程杂志, 2014, 34(06): 75-83.

YANG Hua-jun, ZOU Shao-lan, LIU Cheng, MA Yuan-yuan, MA Xiang-xia, HONG Jie-fang. Advance in Research on Cellulase Expression in Saccharomyces cerevisiae. China Biotechnology, 2014, 34(06): 75-83.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20140611        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I06/75


[1] Demain A L,Newcomb M,Wu J H. Cellulase,clostridia,and ethanol. Microbiol Mol Biol Rev,2005, 69:124-154.

[2] Daniel C, la Grange, de Haan R, et al. Engineering cellulolytic ability into bioprocessing organisms. Appl Microbiol Biotechnol, 2010, 87:1195-1208.

[3] Krishnan C, Sousa L D, Jin M, et al. Alkali-based APEX pretreatment for the conversion of sugarcane bagasse and cane leaf residues to ethanol. Biotechnol Bioeng, 2010, 107:441-450.

[4] Lynd L R, van Zyl W H, McBride J E, et al. Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol, 2005, 16(5):577-583.

[5] Hahn-Hgerdal B, Galbe M, Gorwa-Grauslund M F, et al. Bio-ethanol——the fuel of tomorrow from the residues of today. Trends Biotechnol, 2006, 24:549-556.

[6] Li M Z, Elledge S J. Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat Methods, 2007, 4:251-256.

[7] Shao Z Y, Zhao H, Zhao H M. DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res, 2009, 37:e16.

[8] Gibson D G. Synthesis of DNA fragments in yeast by one-step assembly of overlapping oligonucleotides. Nucleic Acids Res, 2009, 37:6984-6990.

[9] la Grange D C, den Haan R, van Zyl W H. Engineering cellulolytic ability into bioprocessing organisms. Appl Microbiol Biotechnol, 2010, 87(4):1195-1208.

[10] 张惠展. 基因工程概论.上海:华东理工大学出版社, 1999.213. Zhang H Z. Outline of Genetic Engineering. Shanghai:East China University of Science and Technology Press, 1999.213.

[11] Porro D, Sauer M, Branduardi P, et al. Recombinant protein production in yeasts. Molecular Biotechnology, 2005, 31:245-259.

[12] den Haan R, Rose S H, Lynd L R, et al. Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metab Eng, 2007, 9:87-94.

[13] Van Rensburg P, Van Zyl W H, Pretorius I S. Engineering yeast for efficient cellulose degradation.Yeast, 1998, 14(1):67-76.

[14] Cho K M, Yoo Y J, Kang H S. δ-Integration of endo/exo-glucanase and β-glucosidase genes into the yeast chromosomes for direct conversion of cellulose to ethanol. Enzyme Microb Technol, 1999, 25:23-30.

[15] Khramtsov N, McDade L, Amerik A, et al. Industrial yeast strain engineered to ferment ethanol from ligocellulosic biomass. Bioresource Technology, 2011, 102(17): 8310-8313.

[16] Fujita Y, Ito J, Ueda M, et al. Synergistic saccharification, and direct fermentation to ethanol of amorphous cellulose by use of engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microbiol, 2004, 70:1207-1212.

[17] Matano Y, Hasunuma T, Kondo A. Display of cellulases on the cell surface of Saccharomyces cerevisiae for high yield ethanol production from high-solid lignocellulosic biomass. Bioresour Technol, 2012, 108:128-133.

[18] Yamada R, Yanase S, Kaneko S, et al. Ethanol production from cellulosic materials using cellulase-expressing yeast. Biotechnol J, 2010, 5:449-455.

[19] Yamada R, Taniguchi N, Tanaka T, et al. Direct ethanol production from cellulosic materials using a diploid strain of Saccharomyces cerevisiae with optimized cellulase expression. Biotechnol Biofuels, 2011, 4:8.

[20] Fujita Y, Takahashi S, Ueda M, et al. Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Appl Environ Microbiol, 2002, 68(10):5136-5141.

[21] 张国畅. 利用代谢工程、辅酶工程及酶工程构建重组酿酒酵母木糖利用菌株以生产乙醇的研究. 天津:天津大学, 2011. Zhang G CH. Metabolic engineering, cofactor engineering and enzymatic engineering for construction of recombinant xylose-utilizing Saccharomyces cerevisiae strains to produce ethanol. Tianjin:Tianjin University, 2011.

[22] Bitter G A, Chen K K, Banks A R, et al. Secretion of foreign proteins from Saccharomyces cerevisiae directed by alpha-factor gene fusions. Proc Natl Acad Sci USA, 1984, 81(17): 5330-5334.

[23] Moir D T, Dumais D R. Glycosylation and secretion of human alpha-1-antitrypsin by yeast. Gene, 1987, 56:209-217.

[24] Hinnen A, Meyhack B, Heim J. Heterologous gene expression in yeast. In: Barr P J, Barke A J, Valenzuela P.ed.Yeast Genetic Engineering, Boston:Butterworths,1989.189-213.

[25] Baldari C, Murray J A, Ghiara P, et al. A novel leader peptide which allows efficient secretion of a fragment of human interleukin 1beta in Saccharomyces cerevisiae. EMBO J, 1987, 6(1): 229-234.

[26] Kotaka A, Bando H, Kaya M, et al. Direct ethanol production from barley beta-glucan by sake yeast displaying Aspergillus oryzae β-glucosidase and endoglucanase. J Biosci Bioeng, 2008, 105(6):622-627.

[27] Matano Y, Hasunuma T, Kondo A. Display of cellulases on the cell surface of Saccharomyces cerevisiae for high yield ethanol production from high-solid lignocellulosic biomass. Bioresour Technol, 2012, 108:128-133.

[28] Liu L, Liu C, Zou S, et al. Expression of cellulase genes in Saccharomyces cerevisiae via δ-integration subject to auxotrophic markers. Biotechnol Lett, 2013, 35:1303-1307.

[29] Wang G, Liu C, Hong J, et al. Comparison of process configurations for ethanol production from acid- and alkali-pretreated corncob by Saccharomyces cerevisiae strains with and without β-glucosidase expression. Bioresour Technol, 2013, 142:154-161.

[30] Zhang W N, Liu C, Wang G C, et al. Comparison of the expression in Saccharomyces cerevisiae of endoglucanase II from Trichoderma reesei and endoglucanase I from Aspergillus aculeatus. BioResources, 2012, 7(3):4031-4045.

[31] Jeon E, Hyeon J E, Suh D J, et al. Production of cellulosic ethanol in Saccharomyces cerevisiae heterologous expressing Clostridium thermocellum endoglucanase and Saccharomycopsis fibuligera beta-glucosidase genes. Mol Cells, 2009, 28(4):369-373.

[32] Smith R A, Duncan M J, Moir D T. Heterologous protein secretion from yeast. Science, 1985, 229:1219-1224.

[33] Ekino K, Hayashi H, Moriyama M, et al. Engineering of polyploid Saccharomyces cerevisiae for secretion of large amounts of fungal glucoamylase. Appl Environ Microbiol, 2002, 68(11):5693-5697.

[34] Dujon B. The yeast genome project: what did we learn? Trends Genet, 1996, 12(7):263-270.

[35] Yamada R, Taniguchi N, Tanaka T, et al. Cocktail delta-integration: a novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains. Microb Cell Fact, 2010, 9:32.

[36] Takada G, Kawaguchi T, Sumitani J, et al. Expression of Aspergillus aculeatus NO. F-50 cellobiohydrolase I (cbh1) and β-glucosidase 1 (bgl1) genes by Saccharomyces cerevisiae. Biosci Biotechnol Biochem, 1998, 62(8):1615-1618.

[37] Errede B, Company M, Huchison C A. Ty1 sequence with enhancer and mating-type-dependent regulatory activities. Mol Cell Biol, 1987, 7(1): 258-265.

[38] Yang H, Liu C, Zou S, et al. Improving bgl1 gene expression in Saccharomyces cerevisiae through meiosis in an isogenic triploid. Biotechnol Lett, 2014, doi: 10.1007/ s10529-014-1471-z.

[39] 徐丽丽,沈煜,鲍晓明. 酿酒酵母纤维素乙醇统合加工(CBP)的策略及研究进展. 生物工程学报, 2010, 26(7):1-10. Xu L L, Shen Y, Bao X M. Progress and strategies on bioethanol production from lignocellulose by consolid ated bioprocessing (CBP) using Saccharomyce scerevisiae. Chinese Journal of Biotechnology, 2010, 26(7):1-10.

[40] Khaw T S, Katakura Y, Koh J, et al. Evaluation of performance of different surface-engineered yeast strains for direct ethanol production from raw starch. Appl Microbiol Biotechnol, 2006,70:573-579.

[41] Schwarz W H. The cellulosome and cellulose degradation by anaerobic bacteria. Appl Microbiol Biotechnol, 2001, 56:634-649.

[42] Tsai S L, DaSilva N A, Chen W. Functional display of complex cellulosomes on the yeast surface via adaptive assembly. ACS Synth Biol, 2013, 2(1):14-21.

[43] Wood T M. Fungal cellulases. Biochem Soc Trans, 1992, 20:46-53.

[44] Voutilainen S P, Murray P G, Tuohy M G, et al. Expression of Talaromyces emersonii cellobiohydrolase Cel7A in Saccharomyces cerevisiae and rational mutagenesis to improve its thermostability and activity. Protein Eng Des Sel, 2010, 23:69-79.

[45] den Haan R, Kroukam P H, van Zyl J H D, et al. Cellobiohydrolase secretion by yeast: Current state and prospects for improvement. Process Biochem, 2013, 48:1-12.

[46] Ilmén M, den Haan R, Brevnova E, et al. High level secretion of cellobiohydrolases by Saccharomyces cerevisiae. Biotechnol Biofuels, 2011, 4:30.

[47] Olson D G, McBride J E, Shaw A J, et al. Recent progress in consolidated bioprocessing. Curr Opin Biotechnol, 2012, 23:396-405.

[48] Baek S H, Kim S, Lee K, et al. Cellulosic ethanol production by combination of cellulase-displaying yeast cells. Enzyme Microb Technol, 2012, 51(6-7):366-372.

[49] Wilde C, Gold N, Bawa N, et al. Express of a library of fungal β-glucosidases in Saccharomyces cerevisiae for the development of a biomass fermenting strain. Appl Microbiol Biotechnol, 2012, 95: 647-659.

[50] Tang H, Hou J, Shen Y, et al. High β-glucosidase secretion in Saccharomyces cerevisiae improves the efficiency of cellulase hydrolysis and ethanol production in simultaneous saccharification and fermentation. J Microbiol Biotechnol, 2013, 23(11):1577-1585.

[1] 林艳梅,罗湘,李瑞杰,秦秀林,冯家勋. 纤维二糖水解酶N-糖基化对其在草酸青霉中的分泌和酶活影响*[J]. 中国生物工程杂志, 2021, 41(4): 18-29.
[2] 董曙馨,秦磊,李春,李珺. 利用转录因子工程重塑代谢网络实现细胞工厂高效生产[J]. 中国生物工程杂志, 2021, 41(4): 55-63.
[3] 薛志勇,代红生,张显元,孙艳颖,黄志伟. 表达透明颤菌血红蛋白基因对酿酒酵母生长及细胞内氧化状态的影响*[J]. 中国生物工程杂志, 2021, 41(11): 32-39.
[4] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[5] 徐晓, 程驰, 袁凯, 薛闯. 里氏木霉产纤维素酶研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 52-61.
[6] 岑黔鸿,高彤,任怡,雷涵. 重组酿酒酵母表达幽门螺杆菌VacA蛋白及其免疫原性分析*[J]. 中国生物工程杂志, 2020, 40(5): 15-21.
[7] 章小毛,郭敬涵,洪解放,陆海燕,丁娟娟,邹少兰,范寰. UPRE-lac Z为报告基因评价酵母UPR响应初步研究 *[J]. 中国生物工程杂志, 2020, 40(10): 1-9.
[8] 胡妍,李辉,何承文,朱婧,谢志平. 酵母亚细胞结构分离效率评估菌株的构建 *[J]. 中国生物工程杂志, 2020, 40(10): 10-23.
[9] 张正坦,朱婧,谢志平. 酿酒酵母全基因组SNARE蛋白的亚细胞定位研究 *[J]. 中国生物工程杂志, 2019, 39(10): 44-57.
[10] 陆海燕,李佳蔓,孙思凡,章小毛,丁娟娟,邹少兰. CRISPR - Cas9系统介导的工业酵母营养缺陷型菌株构建 *[J]. 中国生物工程杂志, 2019, 39(10): 67-74.
[11] 张莹莹,汤斌,堵国成. 匍枝根霉纤维二糖合成酶胞内糖基供体的初探及结构功能研究[J]. 中国生物工程杂志, 2018, 38(4): 38-45.
[12] 黄俊,吴仁智,陆琦,芦志龙. 酿酒酵母木糖转运基因研究进展 *[J]. 中国生物工程杂志, 2018, 38(2): 109-115.
[13] 张伟, 刘夺, 李炳志, 元英进. 产对香豆酸酿酒酵母菌株的构建及优化[J]. 中国生物工程杂志, 2017, 37(9): 89-97.
[14] 李博, 梁楠, 刘夺, 刘宏, 王颖, 肖文海, 姚明东, 元英进. 合成8二甲基异戊烯基柚皮素的人工酿酒酵母菌株构建[J]. 中国生物工程杂志, 2017, 37(9): 71-81.
[15] 郗欣彤,毛绍名. 褐藻制备生物乙醇的生产优化研究 *[J]. 中国生物工程杂志, 2017, 37(12): 111-118.