Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (06): 68-74    DOI: 10.13523/j.cb.20140610
技术与方法     
大肠杆菌基因组基因无痕敲除的优化方法
葛高顺1, 张立超1, 赵昕2, 胡学军1, 李雅杰1
1. 大连大学医学院 大连 116622;
2. 辽宁出入境检验检疫局 大连 116001
Optimization of the Method for Scarless Gene Knockout in Escherichia coli Genome
GE Gao-shun1, ZHANG Li-chao1, ZHAO Xin2, HU Xue-jun1, LI Ya-jie1
1. Medical College, Dalian University, Dalian 116622, China;
2. Liaoning Entry-Exit Inspection and Quarantine Bureau, Dalian 116001, China
 全文: PDF(788 KB)   HTML
摘要:

目的:优化大肠杆菌基因组基因无痕敲除的方法,提高无痕敲除的效率。方法:以无痕敲除大肠杆菌nanKETA基因簇为模型,利用Red同源重组系统和核酸内切酶I-SceI的筛选作用,通过两步连续同源重组无痕敲除大肠杆菌CLM37基因组中的nanKETA基因,优化无痕敲除时同源DNA长度与诱导用于筛选阳性克隆I-SceI表达的诱导剂浓度。通过比较敲除nanKETA基因前后菌株的生长曲线,研究大肠杆菌CLM37缺失nanKETA基因后的生长状态。结果:成功无痕敲除大肠杆菌CLM37基因组中的nanKETA基因,并在无痕化处理时,通过延长与基因组同源DNA的长度,由通常使用的80碱基对延长到684碱基对;并通过提高诱导筛选基因表达的四环素的浓度,由500 μg/ml提高到1000 μg/ml后,使无痕敲除效率高达90%以上。生长曲线研究表明,缺失nanKETA基因后的菌株生长状态与原菌株基本一致。结论:通过延长与基因组同源的双链核苷酸的长度和诱导筛选基因表达的四环素的浓度可显著提高无痕敲除的效率。

关键词: 大肠杆菌基因组无痕敲除Red同源重组系统I-SceI    
Abstract:

Objective: The purpose was to improve the efficiency of scarless gene knockout in E. coli genome by the optimized method. Methods: The efficacy of scarless gene knockout in E.coli genome by two steps Red homologous recombinantion system and endonuclease I-SceI screening was investigated via optimization of the homologous DNA length with target sequence and the inducer concentration for production of I-SceI for the selection of positive clones. The scarless knockout of nanKETA clusters in the strain CLM37 was taken as a model. The new strain growth behaviour with the scarless knockout of nanKETA was investigated via the comparing the growth curves of wildtype E. coli CLM37. Results: The nanKETA clusters were knockouted scarless successfully in E. coli CLM37 genome, and the efficacy of scarless processing was increased up to 90% via extending the length of the homologous DNA with the genome, from the 80 base pairs normally used up to 684 base pairs, and increasing the concentration of the inducer tetracycline for producing I-SceI, from 500 μg/ml upto 1000 μg/ml. It is shown that the knockout of nanKETA clusters in E. coli CLM37 did not impact the growth. Conclusion: The efficacy of gene scarless knockout in E.coli can be significantly improved via extending the length of the homology DNA and increasing the concentration of inducer tetracycline.

Key words: Escherichia coli    Genome    Scarless gene knockout    Red homologous recombination system    I-SceI
收稿日期: 2014-03-05 出版日期: 2014-06-25
ZTFLH:  Q78  
基金资助:

国家自然科学基金资助项目(31070822,31370937)

通讯作者: 胡学军, 李雅杰     E-mail: huxuejun@dlu.edu.cn;liyj@dlu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

葛高顺, 张立超, 赵昕, 胡学军, 李雅杰. 大肠杆菌基因组基因无痕敲除的优化方法[J]. 中国生物工程杂志, 2014, 34(06): 68-74.

GE Gao-shun, ZHANG Li-chao, ZHAO Xin, HU Xue-jun, LI Ya-jie. Optimization of the Method for Scarless Gene Knockout in Escherichia coli Genome. China Biotechnology, 2014, 34(06): 68-74.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20140610        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I06/68


[1] Murphy K C. Use of bacteriophage lambda recombination functions to promote gene replacement in Escherichia coli. J Bacteriol, 1998, 180(8): 2063-2071.

[2] Datsenko K A, Wanner B L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A, 2000, 97(12): 6640-6645.

[3] Tischer B K, von Einem J, Kaufer B, et al. Two-step red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli. Biotechniques, 2006, 40(2): 191-197.

[4] Kolisnychenko V, Plunkett G, Herring C D, et al. Engineering a reduced Escherichia coli genome. Genome Res, 2002, 12(4): 640-647.

[5] Hashimoto M, Ichimura T, Mizoguchi H, et al. Cell size and nucleoid organization of engineered Escherichia coli cells with a reduced genome. Mol Microbiol, 2005, 55(1): 137-149.

[6] Yu B J, Sung B H, Koob M D, et al. Minimization of the Escherichia coli genome using a Tn5-targeted Cre/loxP excision system. Nat Biotechnol, 2002, 20(10): 1018-1023.

[7] Pósfai G, Kolisnychenko V, Bereczki Z, et al. Markerless gene replacement in Escherichia coli stimulated by a double-strand break in the chromosome. Nucleic Acids Res, 1999, 27(22): 4409-4415.

[8] Blank K, Hensel M, Gerlach R G. Rapid and highly efficient method for scarless mutagenesis within the Salmonella enterica chromosome. PLoS One, 2011, 6(1): e15763.

[9] Serra-Moreno R, Acosta S, Hernalsteens J P, et al. Use of the lambda Red recombinase system to produce recombinant prophages carrying antibiotic resistance genes. BMC Mol Biol, 2006, 7:31.

[10] Gerlach R G, Jckel D, Hlzer S U, et al. Rapid oligonucleotide-based recombineering of the chromosome of Salmonella enterica. Appl Environ Microbiol, 2009, 75(6): 1575-1580.

[11] Fierfort N, Samain E. Genetic engineering of Escherichia coli for the economical production of sialylated oligosaccharides. J Biotechnol, 2008, 134(3-4): 261-265.

[12] Drouillard S, Mine T, Kajiwara H, et al. Efficient synthesis of 6'-sialyllactose, 6,6'-disialyllactose, and 6'-KDO-lactose by metabolically engineered E. coli expressing a multifunctional sialyltransferase from the Photobacterium sp. JT-ISH-224. Carbohydr Res, 2010, 345(10): 1394-1399.

[13] Chen X, Varki A. Advances in the biology and chemistry of sialic acids. ACS Chem Biol, 2010, 5(2): 163-176.

[14] Kawai N, Ikematsu H, Iwaki N, et al. Comparison of the effectiveness of zanamivir and oseltamivir against influenza A/H1N1, A/H3N2, and B. Clin Infect Dis, 2009, 48(7): 996-997.

[1] 陈亚超,李楠楠,刘子迪,胡冰,李春. 源于甘草内生菌的甘草酸合成相关功能基因的宏基因组挖掘*[J]. 中国生物工程杂志, 2021, 41(9): 37-47.
[2] 乔圣泰,王曼琦,徐慧妮. 番茄SlTpx原核表达蛋白的体外功能分析*[J]. 中国生物工程杂志, 2021, 41(8): 25-32.
[3] 王晓洁,孟凡强,周立邦,吕凤霞,别小妹,赵海珍,陆兆新. 利用基因组改组技术提高短杆菌素产量及其培养条件优化*[J]. 中国生物工程杂志, 2021, 41(8): 42-51.
[4] 何若昱,林福玉,高向东,刘金毅. 信号肽在大肠杆菌分泌系统中的研究与应用进展[J]. 中国生物工程杂志, 2021, 41(5): 87-93.
[5] 杨梦冰,江易林,祝蕾,安学丽,万向元. CRISPR/Cas植物基因组编辑技术及其在玉米中的应用*[J]. 中国生物工程杂志, 2021, 41(12): 4-12.
[6] 殷芳冰,王成,龙艳,董振营,万向元. 玉米雌穗性状遗传分析与形成机制*[J]. 中国生物工程杂志, 2021, 41(12): 30-46.
[7] 秦文萱,刘鑫,龙艳,董振营,万向元. 玉米叶夹角形成的遗传基础与分子机制解析*[J]. 中国生物工程杂志, 2021, 41(12): 74-87.
[8] 王锐璞,董振营,高悦欣,龙艳,万向元. 玉米籽粒淀粉含量遗传基础与调控机制*[J]. 中国生物工程杂志, 2021, 41(12): 47-60.
[9] 马雅杰,高悦欣,李依萍,龙艳,董振营,万向元. 玉米株高和穗位高的遗传基础与分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 61-73.
[10] 王彦博,魏佳,龙艳,董振营,万向元. 玉米雄穗性状遗传结构与形成分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 88-102.
[11] 吴弘轩, 杨金花, 沈培杰, 李清晨, 黄建忠, 祁峰. 利用大肠杆菌细胞工厂生产吲哚-3-乙酸的研究 *[J]. 中国生物工程杂志, 2021, 41(1): 12-19.
[12] 闫伟欢,黄统,洪解放,马媛媛. 丁醇在大肠杆菌中的生物合成研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 69-76.
[13] 童梅,程永庆,刘金毅,徐晨. 促进大肠杆菌周质空间小分子抗体表达的菌种构建方法*[J]. 中国生物工程杂志, 2020, 40(5): 48-56.
[14] 杨丽,石晓宇,李文蕾,李剑,徐寒梅. 构建噬菌体展示抗体库过程中电穿孔法的条件优化[J]. 中国生物工程杂志, 2020, 40(4): 42-48.
[15] 姜吉喆, 潘航, 乐敏, 章乐. 基于比较基因组学方法的世界范围的犬布鲁氏菌系统发育群研究 *[J]. 中国生物工程杂志, 2020, 40(3): 38-47.