Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (06): 61-67    DOI: 10.13523/j.cb.20140609
技术与方法     
利用同源重组的方法提高大肠杆菌W3110天冬氨酸的积累
马怀远, 黄非, 白林含
四川大学生命科学学院 生物资源与生态环境教育部重点实验室 成都 610064
Accumulation of Aspartic Acid in Escherichia coli W3110 is Improved by Homologous Recombination
MA Huai-yuan, HUANG Fei, BAI Lin-han
Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
 全文: PDF(652 KB)   HTML
摘要:

大肠杆菌中存在3种天冬氨酸激酶,分别为LysC,MetL,ThrA,使天冬氨酸磷酸化后分别进入Lys、Met、Thr的合成途径.因此大肠杆菌菌体中无法积累大量天冬氨酸. 以大肠杆菌W3110为出发菌株,利用Red同源重组系统分别构建了LysC、ThrAMetL单基因缺陷株和LysC-ThrALysC-MetL双基因缺陷株. 采用高效液相色谱法测定L-天冬氨酸积累量. 发现除MetL单基因突变株外,其余突变株均积累了比野生型更多的L-天冬氨酸,这为代谢工程改造菌株并通过发酵法生产天冬氨酸奠定了基础.

关键词: 大肠杆菌W3110Red同源重组基因敲除高效液相色谱L-天冬氨酸    
Abstract:

There are three kinds of aspartate kinase in the metabolic pathway of Escherichia coli, including LysC, MetL and ThrA. Lysine, methionine and threonine are synthesized after aspartic acid phosphorylation pathway caused by aspartate kinase so that aspartic acid is not able to be accumulated to a high concentration in E. coli. Aspartic acid phosphorylation could partly inhibit by gene knock-out. Single gene mutants which lack LysC, ThrA and MetL respectively, are constructed from W3110.After chloroamphenicol resistance removed by pCP20, double gene mutants which lack LysC-ThrA and LysC-MetL respectively are constructed. All mutants are finally confirmed by check primer. These constructions are based on Red recombination system. Concentration of aspartic acid is determined by high performance liquid chromatography. The results show that all mutants except MetL single gene mutants are able to accumulate more L-aspartic acid than wild type. This will lay a foundation for strain improvement by metabolic engineering and contribute to production of aspartic acid by fermentation.

Key words: Escherichia coli W3110    Red recombination    Gene knock-out    High performance liquid chromatography    L-aspartic acid
收稿日期: 2014-04-10 出版日期: 2014-06-25
ZTFLH:  Q784  
基金资助:

国家自然科学基金(30970043)、 四川省科技厅支撑计划省院科技合作项目(2013JZ0009)资助项目

通讯作者: 白林含     E-mail: bailinhan@scu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

马怀远, 黄非, 白林含. 利用同源重组的方法提高大肠杆菌W3110天冬氨酸的积累[J]. 中国生物工程杂志, 2014, 34(06): 61-67.

MA Huai-yuan, HUANG Fei, BAI Lin-han. Accumulation of Aspartic Acid in Escherichia coli W3110 is Improved by Homologous Recombination. China Biotechnology, 2014, 34(06): 61-67.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20140609        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I06/61


[1] Ratner S, Anne P. Biosynthesis of urea enzymatic mechanism of arginine synthesis from citrulline.J Biol Chem, 1949, 179(3): 1183-1198.

[2] Roweton S, Huang S J, Swift G.Poly (aspartic acid): synthesis, biodegradation, and current applications.J Environ Polymer Degr, 1997, 5(3): 175-181.

[3] Machowski S,Twardowski J,Tichek P.Manufacture of DL-aspartic acid by ammonolysis of maleic anhyfride. PL, 133691, 1986-08-30.

[4] Chibata I, Tosa T, Sato T. Production of L-aspartic acid by microbial cells entrapped in polyacrylamide gels. Methods Enzymol, 1976, 44(50): 739-746.

[5] Becker J, Wittmann C. Systems and synthetic metabolic engineering for amino acid production - the heartbeat of industrial strain development. Curr Opin Biotechnol, 2012, 23(5): 718-726.

[6] Viola R E. The central enzymes of the aspartate family of amino acid biosynthesis.Acc Chem Res, 2000, 34(5): 339-349.

[7] Katinka M, Cossart P, Sibilli L, et al. Nucleotide sequence of the ThrA gene of Escherichia coli. Proc Natl Acad Sci U S A, 1980, 77(10): 5730-5733.

[8] Zakin M M, Duchange N, Ferrara P, et al. Nucleotide sequence of the metL gene of Escherichia coli. Its product, the bifunctional aspartokinase ii-homoserine dehydrogenase II, and the bifunctional product of the ThrA gene, aspartokinase I-homoserine dehydrogenase I, derive from a common ancestor. J Biol Chem, 1983, 258(5): 3028-3031.

[9] Cassan M, Parsot C, Cohen G N. Nucleotide sequence of LysC gene encoding the lysine-sensitive aspartokinase III of Escherichia coli K12.J Biol Chem, 1986, 261(3): 1052-1057.

[10] Bailey J E.Toward a science of metabolic engineering.Science, 1991, 252(5013): 1668-1674.

[11] Keasling J D. Synthetic biology and the development of tools for metabolic engineering.Metab Eng, 2012, 14(3): 189-195.

[12] Yadav V G, DeMey M, Lim C G, et al. The future of metabolic engineering and synthetic biology:Towards a systematic practice.Metab Eng, 2012, 14(3): 233-241.

[13] Murphy K C, Campellone K G, Poteete A R. PCR-mediated gene replacement in Escherichia coli.Gene, 2000, 246(1-2): 321-330.

[14] Stephanopoulos G, Vallino J J. Network rigidity and metabolic engineering in metabolite overproduction.Science, 1991, 252(5013): 1675-1681.

[15] Stephanopoulos G. Metabolic fluxes and metabolic engineering.Metab Eng, 1999, 1(1): 1-11.

[16] Cremer J, Treptow C, Eggeling L, et al. Regulation of enzymes of lysine biosynthesis in Corynebacterium glutamicum.J Gen Microbiol, 1988, 134(12): 3221-3229.

[17] Ohnishi J, Mitsuhashi S, Hayashi M, et al. A novel methodology employing Corynebacterium glutamicum genome information to generate a new L-lysine-producing mutant.Appl Microbiol Biotechnol, 2002, 58(2): 217-223.

[18] Ogilvie J W, Sightler J H, Clark R B. Homoserine dehydrogenase of Escherichia coli K 12 lambda. I. Feedback inhibition by L-threonine and activation by potassium ions. Biochemistry, 1969, 8(9): 3557-3567.

[19] Kikuchi Y, Kojima H, Tanaka T. Mutational analysis of the feedback sites of lysine-sensitive aspartokinase of Escherichia coli. FEMS Microbiol Lett, 1999, 173(1): 211-215.

[1] 彭海丽,侯占铭. MDT1基因参与禾谷镰刀菌分生孢子发生和营养生长 *[J]. 中国生物工程杂志, 2020, 40(8): 10-18.
[2] 郭洋,万颖寒,王珏,龚慧,周宇,慈磊,万志鹏,孙瑞林,费俭,沈如凌. Toll样受体4(TLR4)基因剔除小鼠构建及初步表型分析[J]. 中国生物工程杂志, 2020, 40(6): 1-9.
[3] 郭晶,侯占铭. Folpcs1基因对尖孢镰刀菌亚麻专化型的无性繁殖和营养生长的调控 *[J]. 中国生物工程杂志, 2020, 40(3): 48-64.
[4] 郭胜楠, 李信晓, 王峰, 刘昆梅, 丁娜, 扈启宽, 孙涛. 海马与新皮质组织特异性GABRG2基因敲除小鼠模型的构建及其在遗传性癫痫伴热性惊厥附加症中的初步研究 *[J]. 中国生物工程杂志, 2020, 40(3): 9-20.
[5] 郭超婧,朱琼,张新,李磊,张令强. 去泛素化酶OTUB1肝脏特异性基因敲除小鼠模型的构建与表型分析 *[J]. 中国生物工程杂志, 2019, 39(5): 80-87.
[6] 万颖寒,慈磊,王珏,龚慧,李俊,董茹,孙瑞林,费俭,沈如凌. PD-L1基因敲除小鼠构建及初步表型验证[J]. 中国生物工程杂志, 2019, 39(12): 42-49.
[7] 吴果果,宋淑婷,岳荣,张晶,关莹,王玥,刘宝爱,吕学敏,魏建军,张会图. 反向筛选标记基因upp在杀真菌链霉菌遗传改造中的应用 *[J]. 中国生物工程杂志, 2019, 39(11): 78-86.
[8] 陆海燕,李佳蔓,孙思凡,章小毛,丁娟娟,邹少兰. CRISPR - Cas9系统介导的工业酵母营养缺陷型菌株构建 *[J]. 中国生物工程杂志, 2019, 39(10): 67-74.
[9] 苏春晓,张晓玉,曾晗,陈压西,阮雄中,杨萍. 肝脏特异性CD36基因敲除小鼠的制备及鉴定 *[J]. 中国生物工程杂志, 2018, 38(8): 26-33.
[10] 戴红苗,付业胜,张令强. 应用CRISPR/Cas9技术构建YOD1基因敲除小鼠 *[J]. 中国生物工程杂志, 2018, 38(6): 52-57.
[11] 丁威,冯延宾,曹旭鹏,薛松. Acyl-ACPs的规模化合成[J]. 中国生物工程杂志, 2018, 38(4): 63-69.
[12] 盛玉瑞,李斌,王斌,左娣,马琳,任晓璠,郭乐,刘昆梅. 利用CRISPR/Cas9技术构建AEG-1基因敲除U251细胞系并探讨其转移行为的特点 *[J]. 中国生物工程杂志, 2018, 38(10): 38-47.
[13] 孙一平, 王越, 金镇, 王晓岩, 孙磊, 张璇, 冯冲, 周效华. SHBG基因敲除小鼠模型的建立及其表型分析[J]. 中国生物工程杂志, 2017, 37(8): 39-45.
[14] 张震阳, 杨艳坤, 战春君, 李翔, 刘秀霞, 白仲虎. Pichia pastoris X-33 ΔGT2缓解甘油对AOX1的阻遏并用于外源蛋白的高效表达[J]. 中国生物工程杂志, 2017, 37(1): 38-45.
[15] 杜红燕, 李天明, 刘金雷, 冯惠勇. 构建尿嘧啶磷酸核糖转移酶基因缺失菌株实现Gluconobacter suboxydans基因组无痕修饰[J]. 中国生物工程杂志, 2016, 36(7): 64-71.