Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (06): 23-30    DOI: 10.13523/j.cb.20140604
研究报告     
CFP10-ESAT-6-MPB64在杆状病毒系统中的表达纯化及免疫原性鉴定
徐丹1,2,4, 刘敏1,2, 孔菊3, 李校堃1,2, 姜潮1,2
1. 温州医科大学 浙江省生物技术与制药工程重点实验室 温州 325035;
2. 吉林农业大学生物反应器与药物开发教育部工程研究中心 长春 130118;
3. 巨野县人民医院 菏泽 274900;
4. 济南康和医药科技有限公司 济南 250101
Expression, Purification and Immunogenicity Analysis of Recombinant CFP10-ESAT-6-MPB64 Using the Baculovirus Expression System
XU Dan1,2,4, LIU Min1,2, KONG Ju3, LI Xiao-kun1,2, JIANG Chao1,2
1. Key Laboratory of Biotechnology Pharmaceutical Engineering of Zhejiang Province, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325035, China;
2. Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Changchun 130118, China;
3. Juye County Peoples Hospital, Heze 274900, China;
4. Jinan Kanghe Pharmaceutical Technology Co., Ltd. Jinan 250101, China
 全文: PDF(1007 KB)   HTML
摘要:

目的:在杆状病毒昆虫细胞表达系统(baculovirus expression vector system,BEVS)中表达结核分枝杆菌蛋白CFP10-ESAT-6-MPB64,并鉴定其免疫原性。方法:目的基因CFP10-ESAT-6-MPB64连接到pFastBac转移载体并转化DH10Bac感受态,通过Tn7转座片段将目的基因转座到Bacmid中,得到Bacmid-CFP10-ESAT-6-MPB64穿梭载体,脂质体包被后转染Spodoptera frugiperda(Sf9)细胞收获病毒,病毒转染细胞后收集上清通过Co亲和层析纯化得到目的蛋白。纯化的蛋白免疫Balb/c小鼠并检测血清中特异性抗体滴度及PPD抗体,ELISA检测CFP10-ESAT-6-MPB64蛋白刺激脾脏细胞产生IFN-γ的浓度,MTT法检测目的蛋白对免疫后小鼠脾脏细胞的增殖作用。结果:CFP10-ESAT-6-MPB64在昆虫细胞中成功表达,纯化后蛋白纯度达90%以上,蛋白产量为42mg/L,纯化蛋白能有效刺激Balb/c小鼠产生抗体,提高小鼠脾脏细胞培养基中IFN-γ的含量,目的蛋白在1~50μg/ml之间对脾脏细胞有明显的促增殖作用。

关键词: BEVSSf9细胞结核分枝杆菌    
Abstract:

Objective: To express Mycobacterium tuberculosis protein CFP10-ESAT-6-MPB64 in baculovirus insect cell expression system, and identify its immunogenicity. Methods: The target gene CFP10-ESAT-6-MPB64 was connected to pFastBac vector, then the pFastBac-CFP10-ESAT-6-MPB64 plasmid which was harvested would transformed to DH10Bac competent, and the target gene was transposition into Bacmid by Tn7 transposase fragment, therefore Bacmid-CFP10-ESAT-6-MPB64 Shuttle vector was obtained. The shuttle vector was packaged by liposomes and transfected Sf9 cells to harvest P1-generation virus, then high titers of P4 generation virus was harvested by repeat transfected Sf9 cells three times. The target protein CFP10-ESAT-6-MPB64 was purified from the supernatant by Co affine chromatography, which were used to immunize Balb/c mice. Antibody changes in serum would be detected, and the proliferation of immunized mice spleen cells would be detected by MTT,detected the IFN-γ secretion by CFP10-ESAT-6-MPB64 stimulated spleen cells by ELISA method. Result: CFP10-ESAT-6-MPB64 successfully expressed in insect cells. The purity of target protein is over 90% and yield up to 42mg/L after purification. Purified protein can effectively stimulate Balb/c mice to produce antibodies, increase the content of IFN-γ medium in mice spleen cells, and significantly promoting proliferation in spleen cells between 1~50μg/ml. Conclusion: CFP10-ESAT-6-MPB64 which has immunogenicity was successfully expressed in baculovirus insect cell expression system, that open a new avenue for tuberculosis vaccine production.

Key words: BEVS    Sf9    Mycobacterium tuberculosis
收稿日期: 2014-05-06 出版日期: 2014-06-25
ZTFLH:  R392.11  
基金资助:

国家“863”计划(SQ2011AA100606)、浙江省自然科学基金(LY13H300006)、2012年省级重点科技创新团队项目(2012R10042-10)、2012年吉林省高层次创新创业引进人才项目资助项目

通讯作者: 李校堃, 姜潮     E-mail: chaojiang10@hotmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

徐丹, 刘敏, 孔菊, 李校堃, 姜潮. CFP10-ESAT-6-MPB64在杆状病毒系统中的表达纯化及免疫原性鉴定[J]. 中国生物工程杂志, 2014, 34(06): 23-30.

XU Dan, LIU Min, KONG Ju, LI Xiao-kun, JIANG Chao. Expression, Purification and Immunogenicity Analysis of Recombinant CFP10-ESAT-6-MPB64 Using the Baculovirus Expression System. China Biotechnology, 2014, 34(06): 23-30.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20140604        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I06/23


[1] http://www.who.int/tb/publications/global_report/gtbr12_executivesummary.pdf.

[2] Wright A, Zignol M, Deun A V. Epidemiology of antituberculosis drug resistance 2002-07: an updated analysis of the Global Project on Anti-Tuberculosis Drug Resistance Surveillance. Lancet, 2009, 373: 1861-1873.

[3] Shah N S, Wright A, Bai G H. Worldwide emergence of extensively drug-resistant tuberculosis. Emerg Infect Dis, 2007,13: 380-387.

[4] Gandhi N R, Moll A, Sturm A W. Extensively drug-resistant tuberculosis as a cause of death in patients co-infected with tuberculosis and HIV in a rural area of South Africa. Lancet, 2006,368:1575-1580.

[5] Harries A D, Zachariah R, Corbett E L. The HIV-associated tuberculosis epidemic-when will we act. Lancet, 2010,375:906-1919.

[6] Ghebreyesus T A, Kazatchkine M, Sidibé M. Tuberculosis and HIV: time for an intensified response. Lancet, 2010,375:1757-1758.

[7] Fine P E. Variation in protection by BCG: implications of and for heterologous immunity. Lancet, 1995,346:1339-1345.

[8] Skeiky Y A, Sadoff J C. Advances in tuberculosis vaccine strategies. Nat Rev Microbiol, 2006,4:469-476.

[9] Mahairas G G, Sabo P J, Hickey M J. Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. Bacteriology, 1996,178:1274-1282.

[10] Skjot R L, Oettinger T, Rosenkrands I, Comparative evaluation of Low-molecularmass proteins from Mycobacterium tuberculosis identifies members of the ESAT-6 family as immunodominant T cell antigens. Infect Immun, 2000,68:214-220.

[11] Brusasca P N, Peters R L, Motzel S L. Gennaro, Antigen recognition by serum antibodies in non-human primates experimentally infected with Mycobacterium tuberculosis, Comp Med, 2003,53:165-172.

[12] Kamath A T, Feng C G, Macdonald M, et al. Differential protective efficacy of DNA vaccines expressing secreted proteins of Mycobacteria tuberculosis. Infect Immun, 1999, 67(4): 1702-1707.

[13] Smith G E, Fraser M J, Summers M D. Molecular engineering of the Autographa californica nuclear polyhedrosis virus genome: deletion mutations within the polyhedrin gene. Journal of Virology, 1983, 46(2): 584-593.

[14] Schmidt F R. Recombinant expression systems in the pharmaceutical industry. Appl Microbiol Biotechnol, 2004, 65: 363-372.

[15] Blanchard P, Mahe D, Cariolet R, et al. Protection of swine against post-weaning multisystemic wasting syndrome (PMWS) by porcine cirocovirus type 2 (PCV2) proteins. Vaccine, 2003, 21: 4565-4575.

[16] Cox M J, Hollister J R. FluBlok. a next generation influenza vaccine manufactured in insect cells. Biologicals, 2009, 37: 182-189.

[17] Centers for Disease Control and Prevention. Development of new vaccines for tuberculosis. Recommendations of the Advisory Council for the Elimination of Tuberculosis (ACET). Morb Mortal Wkly Rep, 1998, 47: 1-6.

[18] Floyd K, Blanc L, Raviglione M, et al. Resources required for global tuberculosis control. Science, 2002, 295(3): 2040-2041.

[1] 谭杨,刘胜,罗凤玲,章晓联. 结核分枝杆菌H37Rv刺激巨噬细胞后差异表达lncRNA分析及鉴定 *[J]. 中国生物工程杂志, 2018, 38(5): 1-9.
[2] 苏晓蕊, 李伟国, 王延辉, 高晓静, 闪伊红, 谭菲菲, 李向东, 田克恭. 重组杆状病毒细小VP2蛋白40L生物反应器放大工艺研究[J]. 中国生物工程杂志, 2017, 37(10): 60-64.
[3] 刘爱平, 李诚, 刘书亮, 王小红, 陈福生. 抗黄曲霉毒素B1单链抗体在Sf9昆虫细胞中的表达与性质分析[J]. 中国生物工程杂志, 2016, 36(5): 40-45.
[4] 王晓艳, 陈娜子, 艾君, 赵央, 吴美玉, 黄金枝, 姜潮, 李校堃. HBVpre-c-Fc融合蛋白在杆状病毒表达系统中的表达及其生物学活性研究[J]. 中国生物工程杂志, 2015, 35(4): 42-47.
[5] 陆健, 江佳稀, 刘建平, 王洪海. 结核分枝杆菌抗原重组酿酒酵母免疫诱导小鼠特异性免疫应答[J]. 中国生物工程杂志, 2014, 34(11): 47-53.
[6] 刘霞, 郭庆龙, 王若珺, 王洪海, 裴秀英, 张雪莲. 结核分枝杆菌生物膜形成相关基因的筛选与鉴定[J]. 中国生物工程杂志, 2013, 33(4): 15-21.
[7] 朱小静, 姜潮, 薛萍, 王晓艳, 徐丹, 南佳, 艾君, 李校堃. 重组角质细胞生长因子-1在杆状病毒表达系统中的表达及其生物活性研究[J]. 中国生物工程杂志, 2013, 33(3): 47-53.
[8] 王晓娜, 米志强, 安小平, 李建彬, 范华昊, 张文慧, 张博, 黄勇, 周丽君, 童贻刚. 从大容量噬菌体抗体库中筛选抗Acr蛋白人源单链抗体[J]. 中国生物工程杂志, 2012, 32(09): 22-27.
[9] 李浩, 殷瑛, 毛亚丽, 董大勇, 张军, 付玲, 郭继红, 徐俊杰, 陈薇. 结核分枝杆菌ESAT-6蛋白的重组表达及膜定位研究[J]. 中国生物工程杂志, 2011, 31(5): 55-59.
[10] 李浩 殷瑛 毛亚丽 董大勇 张军 付玲 郭继红 徐俊杰 陈薇. 结核分枝杆菌ESAT-6蛋白的重组表达及膜定位研究[J]. 中国生物工程杂志, 2011, 31(05): 0-0.
[11] 周爱萍 陈艳炯 李薇 张旭燕 徐纪茹. 结核杆菌DnaA蛋白在耻垢分枝杆菌中的同源表达[J]. 中国生物工程杂志, 2010, 30(08): 72-75.
[12] 龚业莉1,王琳2,耿建玲2,刘颖2,夏焕章1. 密码子优化型HPV16L1基因在两种昆虫细胞中的表达[J]. 中国生物工程杂志, 2009, 29(07): 27-32.