Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (06): 1-6    DOI: 10.13523/j.cb.20140601
研究报告     
SidK-VatA蛋白复合物的表达和纯化
徐安毕1,2, 黄来强1,2
1. 清华大学生命科学学院 北京 100084;
2. 清华大学深圳研究生院 深圳 518055
Expression and Purification of SidK-VatA Complex
XU An-bi1,2, HUANG Lai-qiang1,2
1. School of Life Sciences, Tsinghua University, Beijing 100084, China;
2. The Shenzhen Key Laboratory of Gene and Antibody Therapy, Division of Life & Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
 全文: PDF(599 KB)   HTML
摘要:

军团菌以吞噬泡的形式进入宿主细胞,借助宿主细胞环境进行自身的繁殖传代。为避免被宿主识别,通过分泌自身效应蛋白来逃避宿主对含病原菌液泡(legionella containing vacuoles,LCVs)的识别和消化,军团菌通过分泌效应蛋白SidK结合宿主v-ATPase,抑制v-ATPase对吞噬泡的酸化,以实现吞噬泡不被溶酶体消化。在大肠杆菌中表达了效应蛋白SidK,利用昆虫细胞表达了VatA(v-ATPase)蛋白,得到了均一性较好的SidK-VatA蛋白复合体,为进一步解析这个复合体的结构奠定了基础。

关键词: 效应蛋白病原体宿主细胞复合体    
Abstract:

legionella makes incursions into host cell by employed a conserved mechanism to form a specific, replication-permissive compartment, the "Legionella-containing vacuole" (LCV), and translocates "effector" proteins into host cells for survival in the host cell. SidK is an effector from legionella, it directly bind the VatA subunit that is responsible for hydrolyzing ATP, leading to defects in LCV acidification and avoiding of lysosomal killing of LCV. The SidK protein was expressed in E.coli, the VatA protein was expressed in insect cell, and the interaction of SidK and VatA identified. Finally, the stable SidK-VatA complex was got. This is important for further study the structure of SidK-VatA complex.

Key words: Effector protein    Pathogene    Host cell    Complex
收稿日期: 2014-04-21 出版日期: 2014-06-25
ZTFLH:  Q786  
基金资助:

深圳市重点实验室建设与提升计划资助项目(CXB201005260070A;CXB201104220043A;EDSY20120616222747467;JCYJ20130402145002438)

通讯作者: 黄来强     E-mail: huanglq@mail.tsinghua.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

徐安毕, 黄来强. SidK-VatA蛋白复合物的表达和纯化[J]. 中国生物工程杂志, 2014, 34(06): 1-6.

XU An-bi, HUANG Lai-qiang. Expression and Purification of SidK-VatA Complex. China Biotechnology, 2014, 34(06): 1-6.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20140601        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I06/1


[1] Santic M, Abu Kwaik Y. Nutritional virulence of Francisella tularensis. Front Cell Infect Microbiol, 2013, 3:112.

[2] Shohdy N, Efe J A, Emr S D,et al. Pathogen effector protein screening in yeast identifies Legionella factors that interfere with membrane trafficking. Proc Natl Acad Sci U S A, 2005, 102(13):4866-4871.

[3] Heidtman M, Chen E J, Moy M Y, et al. Large-scale identification of Legionella pneumophila Dot/Icm substrates that modulate host cell vesicle trafficking pathways. Cell Microbiol, 2009, 11(2):230-248.

[4] Shen X, Banga S, Liu Y, et al. Targeting eEF1A by a Legionella pneumophila effector leads to inhibition of protein synthesis and induction of host stress response. Cell Microbiol, 2009, 11(6):911-926.

[5] Al-Khodor S, Price C T, Habyarimana F, et al. A Dot/Icm-translocated ankyrin protein of Legionella pneumophila is required for intracellular proliferation within human macrophages and protozoa. Mol Microbiol, 2008, 70(4):908-923.

[6] Campodonico E M, Chesnel L, Roy C R. A yeast genetic system for the identification and characterization of substrate proteins transferred into host cells by the Legionella pneumophila Dot/Icm system. Mol Microbiol, 2005, 56(4):918-933.

[7] Kubori T, Hyakutake A, Nagai H. Legionella translocates an E3 ubiquitin ligase that has multiple U-boxes with distinct functions. Mol Microbiol, 2008, 67(6):1307-1319.

[8] Siggers K A, Lesser C F. The Yeast Saccharomyces cerevisiae: a versatile model system for the identification and characterization of bacterial virulence proteins. Cell Host Microbe, 2008, 4(1):8-15.

[9] Weber S S, Ragaz C, Reus K, et al. Legionella pneumophila exploits PI(4)P to anchor secreted effector proteins to the replicative vacuole. PLoS Pathog, 2006, 2(5):e46.

[10] Brisson L, Reshkin S J, Gore J, et al. pH regulators in invadosomal functioning: proton delivery for matrix tasting. Eur J Cell Biol, 2012, 91(11-12):847-860.

[11] Forgac M. Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat Rev Mol Cell Biol, 2007, 8(11):917-929.

[12] Horwitz M A. The Legionnaires' disease bacterium (Legionella pneumophila) inhibits phagosome-lysosome fusion in human monocytes. J Exp Med, 1983, 158(6):2108-2126.

[13] Sturgill-Koszycki S, Schlesinger P H, Chakraborty P, et al. Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science, 1994, 263(5147):678-681.

[14] Urwyler S, Nyfeler Y, Ragaz C, et al. Proteome analysis of Legionella vacuoles purified by magnetic immunoseparation reveals secretory and endosomal GTPases. Traffic, 2009, 10(1):76-87.

[15] Xu L, Shen X, Bryan A, et al. Inhibition of host vacuolar H+-ATPase activity by a Legionella pneumophila effector. PLoS Pathog, 2010, 6(3):e1000822.

[16] Qin A, Cheng T S, Pavlos N J, et al. V-ATPases in osteoclasts: structure, function and potential inhibitors of bone resorption. Int J Biochem Cell Biol, 2012, 44(9):1422-1435.

[17] Romao S, Munz C. LC3-associated phagocytosis. Autophagy, 2014, 10(3):526-528.

[18] Allombert J, Fuche F, Michard C, et al. Molecular mimicry and original biochemical strategies for the biogenesis of a Legionella pneumophila replicative niche in phagocytic cells, Microbes Infect, 2013, 15(14-15):981-988.

[19] Randow F, Youle R J. Self and nonself: how autophagy targets mitochondria and bacteria. Cell Host Microbe, 2014, 15(4):403-411.

[20] Huynh K K, Grinstein S. Regulation of vacuolar pH and its modulation by some microbial species, Microbiol Mol Biol Rev, 2007, 71(3):452-462.

[21] Ohkuma S, Poole B. Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci U S A, 1978, 75(7):3327-3331.

[22] Del Campo C M, Mishra A K, Wang Y H, et al. Structural basis for PI(4)P-specific membrane recruitment of the Legionella pneumophila effector DrrA/SidM. Structure, 2014, 22(3):397-408.

[23] Hardiman C A, Roy C R. AMPylation is critical for Rab1 localization to vacuoles containing Legionella pneumophila. MBio, 2014, 5(1):e01035-01013.

[24] Meng G, An X, Ye S, et al. The crystal structure of LidA, a translocated substrate of the Legionella pneumophila type IV secretion system. Protein Cell, 2013, 4(12):897-900.

[25] Chen J, de Felipe K S, Clarke M, et al. Legionella effectors that promote nonlytic release from protozoa. Science, 2004, 303(5662):1358-1361.

[1] 袁博鑫,吴昊,闫春晓,路娟娥,魏振平,乔建军,阮海华. 病原细菌效应蛋白靶向宿主细胞核研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 81-90.
[2] 刘国芳,刘晓志,高健,王志明. 宿主细胞残留蛋白质对单克隆抗体药物质量影响及其质量控制 *[J]. 中国生物工程杂志, 2019, 39(10): 105-110.
[3] 方雪瑶,胡龙华,杭亚平,俞凤,陈艳慧,钟桥石. 铜绿假单胞菌Ⅵ型分泌系统的研究进展 *[J]. 中国生物工程杂志, 2018, 38(9): 88-93.
[4] 扈丽丽, 卓侃, 林柏荣, 廖金铃. 植物寄生线虫效应蛋白功能分析方法的研究进展[J]. 中国生物工程杂志, 2016, 36(2): 101-108.
[5] 徐安毕, 黄来强. 效应蛋白LepB的表达,纯化及其亚克隆片段的结晶研究[J]. 中国生物工程杂志, 2014, 34(5): 1-5.
[6] 李国坤, 高向东, 徐晨. 哺乳动物细胞表达系统研究进展[J]. 中国生物工程杂志, 2014, 34(1): 95-100.
[7] 李鸿艳, 周思甜, 马建辉, 王艳兴, 孙梅好. 大肠杆菌II型丙酮酸激酶的纯化分析及其作为偶联酶的应用[J]. 中国生物工程杂志, 2013, 33(5): 68-74.
[8] 程凌利, 朱大柱, 黄迪南, 侯敢. 端粒保护蛋白1(POT1)的研究进展[J]. 中国生物工程杂志, 2012, 32(07): 120-126.
[9] 龙宗娟 赵娇红 魏兰珍 王全喜 马为民. 利用同源重组构建蓝藻集胞藻6803ndhO基因突变株及其分子鉴定[J]. 中国生物工程杂志, 2010, 30(09): 31-35.
[10] 吴琼 靳野 郑海学 刘湘涛. 氯霉素和四环素阻碍细菌蛋白分泌的研究进展[J]. 中国生物工程杂志, 2010, 30(07): 0-0.
[11] 黄上洺 凌飞 蒋琼橙 卓敏. 食蟹猴MHC I类A型新等位基因序列分析[J]. 中国生物工程杂志, 2010, 30(05): 43-48.
[12] 祝庆余, 秦鄂德, 王翠娥, 于曼, 司炳银, 范宝昌, 常国辉, 彭文明, 杨保安, 姜涛, 李豫川, 邓永强, 刘洪, 甘永华. 非典型肺炎病例标本中新型冠状病毒的分离与鉴定[J]. 中国生物工程杂志, 2003, 23(4): 106-112.
[13] 刘炳岩, 李光涛, 袁建刚. 胞浆囊泡转运的包被复合体与蛋白分拣[J]. 中国生物工程杂志, 2002, 22(2): 15-18.
[14] 刘玉军, 小川智子, 李一勤. DNA及其蛋白质复合体的电镜观察及研究应用[J]. 中国生物工程杂志, 2000, 20(6): 79-83.
[15] 陆应玉, 李京培, 陈禹保. 聚合酶链反应对性传播病原体检测研究[J]. 中国生物工程杂志, 1999, 19(6): 71-72.