Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (5): 116-121    DOI: 10.13523/j.cb.20140516
农业生物技术专栏     
跨农业:研制水稻智能育种机器人的探讨
李辉1, 左钦月1, 罗科1, 莫邦辉2, 张国林1, 文兴澈2, 杨琼3, 余懋群1, 汪松虎1, 陈斌2, 陈丽1, 陈名财4, 涂升斌1
1 中国科学院成都生物研究所 成都 610041;
2 中科院成都信息技术股份有限公司 成都 610041;
3 仁怀市中等职业学校 仁怀 564599;
4 中共四川省委党校 成都 610071
Transagriculture:A Discussion on Developing Intelligent Rice Breeding Robot
LI Hui1, ZUO Qin-yue1, LUO Ke1, MO Bang-hui2, ZHANG Guo-lin1, WEN Xing-che2, YANG Qiong3, YU Mao-qun1, WANG Song-hu1, CHEN Bin2, CHEN Li1, CHEN Ming-cai4, TU Sheng-bin1
1 Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China;
2 Chengdu Information Technology of Chinese Academy of Sciences Co., Ltd., Chengdu 610041, China;
3 Renhuai Secondary Vocational School, Renhuai 564599, China;
4 CPC Sichuan Provincial Committee Party School, Chengdu 610071, China
 全文: PDF(545 KB)   HTML
摘要:

当前我国面临粮食需求持续增加但粮食产量增速明显放缓的粮食安全问题,探索育种新技术新方法的创新是实现作物新品种选育重大突破,促进粮食单产和总产较大幅度稳步提高,保障我国粮食安全的关键和核心。在结合传统农业研究理论和方法的基础上,探索一种整合多学科的“跨农业”研究模式,可为实现上述目标提供全新的思维和研究模式。“跨农业”是现代农业概念的延伸和发展,是指在面临全球气候变化、资源短缺和粮食安全等重大农业问题背景下,整合政治、经济、科技和农业等各学科领域的优势资源,开展跨学科、跨领域和跨产业的联合攻关与集成创新,以解决重大农业问题的研究模式和解决方案。目前水稻育种理论、基因组学、表型组学、图像识别与处理技术、自动化技术和信息技术的快速发展已为这种“跨农业”的研究模式提供了必要条件。论文在“跨农业”思维指导下,结合课题组在“种子基因分型仪及水稻SSR指纹图谱云计算终端”上的联合研制工作,对水稻智能育种机器人的研制背景、基础与技术条件、可行性、研制方案和应用前景等进行了分析、探讨和展望。

关键词: 跨农业水稻育种智能机器人基因型表现型    
Abstract:

China currently faces the food security problem that demand for food continues to increase while increasing rate of grain yield slows down obviously. Exploring innovation of new technology and methods in crop breeding is a key point to achieve a major breakthrough in breeding of new crop breeding, promote substantial and steady increase of grain yield and ensure china's food security. To achieve these goals, a new thought and research model could be provided by exploring a integrated multidisciplinary transagricultural research mode combined with the traditional theories and methods on agricultural research.‘Transagriculture’is extension and development of modern agriculture. It means a series of research models and solutions in the context of global climate change, resource scarcity and food security, which integrate advantages in various disciplines of politics, economy, science & technology and agriculture, and carry out interdisciplinary, cross-industrial joint research and integrated innovation to solve major problems in agriculture. Rapid development of rice breeding theory, genomics, proteomics, technology of image recognition and processing, automation technology and information technology has provided necessary conditions for such transagricultural research mode. Based on the thought of transagriculture and combined with our joint research project on genotyping instrument for seeds & cloud computing terminal for SSR fingerprint of rice, we analyzed and discussed the research background, basis and technical conditions, feasibility and design scheme of intelligent rice breeding robot, and further prospected its application.

Key words: Transagriculture    Rice breeding    Intelligent robot    Genotype    Phenotype
收稿日期: 2014-04-03 出版日期: 2014-05-25
ZTFLH:  Q94  
基金资助:

四川省产学研创新联盟合作项目(2012ZZ0004)资助

通讯作者: 涂升斌     E-mail: tusb@cib.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

李辉, 左钦月, 罗科, 莫邦辉, 张国林, 文兴澈, 杨琼, 余懋群, 汪松虎, 陈斌, 陈丽, 陈名财, 涂升斌. 跨农业:研制水稻智能育种机器人的探讨[J]. 中国生物工程杂志, 2014, 34(5): 116-121.

LI Hui, ZUO Qin-yue, LUO Ke, MO Bang-hui, ZHANG Guo-lin, WEN Xing-che, YANG Qiong, YU Mao-qun, WANG Song-hu, CHEN Bin, CHEN Li, CHEN Ming-cai, TU Sheng-bin. Transagriculture:A Discussion on Developing Intelligent Rice Breeding Robot. China Biotechnology, 2014, 34(5): 116-121.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20140516        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I5/116


[1] 黎志康. 我国水稻分子育种计划的策略. 分子植物育种,2005, 3(5): 603-608. Li Z K. Strategies for molecular rice breeding in China. Molecular Plant Breeding, 2005, 3.

[2] Tester M, Langridge P. Breeding technologies to increase cro Pproduction in a changing world. Science, 2010, 327(5967): 818-822.

[3] Moose S P, Mumm R H. Molecular plant breeding as the foundation for 21st century cro Pimprovement. Plant Physiol, 2008, 147 (3): 969-977.

[4] 黎裕,王建康,邱丽娟,等. 中国作物分子育种现状与发展前景. 作物学报,2010, 36(9): 1425-1430. Li Y, Wang J K, Qiu L J, et al. Cro Pmolecular breeding in China: current status and perspectives. Acta Agron Sin, 2010, 36(9): 1425-1430.

[5] 万建民. 作物分子设计育种. 作物学报,2006, 32(3): 455-462. Wan J M. Perspectives of molecular design breeding in crops. Acta Agron Sin, 2006, 32(3): 455-462.

[6] Houle D, Govindaraju D R, Omholt S. Phenomics: the next challenge. Nat Rev Genet, 2010, 11(12): 855-866.

[7] 玉光惠,方宣钧. 表型组学的概念及植物表型组学的发展. 分子植物育种,2009, 7(4): 639-645. Yu G H, Fang X J. Concept of phenomics and its development in plant science. Molecular Plant Breeding, 2009, 7(4): 639-645.

[8] 宋幼良. 水稻育种的现状与方向. 中国种业,2013, 1: 10-12. Song Y L. Status and direction of rice breeding. China Seed Industry, 2013, 1: 10-12.

[9] 陈温福,徐正进,唐亮. 中国超级稻育种研究进展与前景. 沈阳农业大学学报,2012, 43(6): 643-649. Chen W F, Xu Z J, Tang L. Advances and prospects in research on super rice breeding. Journal of Shenyang Agricultural University, 2012, 43(6): 643-649.

[10] Yu J, Hu S, Wang J, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science, 2002, 296(5565): 79-92.

[11] Harushima Y, Yano M, Shomura A, et al. A high-density rice genetic linkage ma Pwith 2275 markers using a single F2 population. Genetics, 1998, 148(1): 479-494.

[12] Goff S A, Ricke D, Lan T H, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science, 2002, 296 (5565): 92-100.

[13] Matsumoto T, Wu J Z, Kanamori H, et al. The map-based sequence of the rice genome. Nature, 2005, 436(7052): 793-800.

[14] 张启军,邹江石,吕川根,等. 水稻基因组学研究概况. 西华师范大学学报(自然科学版), 2005, 26(2): 125-135. Zhang Q J, Zou J S, Lv C G, et al. Review on the rice genomics research. Journal of China West Normal University, 2005, 26(2): 125-135.

[15] Shendure J, Ji H. Next-generation DNA sequencing. Nature Biotechnol, 2008, 26(10): 1135-1145.

[16] Marx V. Next-generation sequencing: The genome jigsaw. Nature, 2013, 501(7466): 263-268.

[17] 中国种子协会赴美考察团. 关于美国农作物种业的考察报告. 中国种业,2012, 2: 3-8. Delegation to the America of China Seed Association. Survey report on the cro Pseed industry of america. China Seed Industry, 2012, 2: 3-8.

[18] Reuzeau C, Pen J, Frankard V, et al. TraitMill: a discovery engine for identifying yield-enhancement genes in cereals. Molecular Plant Breeding, 2005, 3(5): 753-759.

[19] 杨传喜, 黄珊, 徐顽强. 中国农业科研机构的科技运行效率分析. 科技管理研究,2013, 33(4): 121-126. Yang C X, Huang S, Xu W Q. Study on the technological status and operating efficiency of agricultural research institutions in china. Science and Technology Management Research, 2013, 33(4): 121-126.

[1] 崔帅,王作平,于江辉,肖国樱. 转基因水稻BPL9K-2事件特异性检测方法的建立 *[J]. 中国生物工程杂志, 2018, 38(11): 32-41.
[2] 赵丽 张文露 胡源 刘彦辰 赖国旗 杨凤 黄爱龙. 反向斑点杂交法快速检测HBV基因型反应条件的优化和建立*[J]. 中国生物工程杂志, 2009, 29(12): 85-89.
[3] 陈元鼎,刘晓,熊新宇,曹志亮,文喻玲,赵庆欢,余洋,尹兴晓,李传印,范耀春. A组人轮状病毒全基因组克隆和基因型分析[J]. 中国生物工程杂志, 2008, 28(2): 25-31.
[4] 钱惠荣, 郑康乐. DNA标记和分子育种[J]. 中国生物工程杂志, 1998, 18(3): 12-18,11.
[5] 陆朝福, 朱立煌. 植物育种中的分子标记辅助选择[J]. 中国生物工程杂志, 1995, 15(4): 11-17.
[6] 睿中. Kunkel会议探讨B细胞生物学[J]. 中国生物工程杂志, 1986, 6(2): 72-74.
[7] R.Curtiss, 乃晨. 遗传饰变的微生物及其制备和使用方法(续)[J]. 中国生物工程杂志, 1982, 2(3): 59-68.
[8] 王身立. 转录调控水平上的基因多效性[J]. 中国生物工程杂志, 1981, 1(4): 4-8.