Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (5): 23-29    DOI: 10.13523/j.cb.20140504
研究报告     
温莪术内生真菌Gibberella moniliformis EZG0807诱变及其诱变株遗传稳定性研究
严菊芬, 齐宁波, 王素萍, 赵健烽, 杨树林
南京理工大学环境与生物工程学院 南京 210094
Mutagenesis and Mutant Genetic Stability of the Endophytic Fungus Gibberella moniliformis EZG0807 from Curcuma wenyujin
YAN Jv-fen, QI Ning-bo, WANG Su-ping, ZHAO Jian-feng, YANG Shu-lin
The School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
 全文: PDF(742 KB)   HTML
摘要:

利用大梯度超导磁体(JMT-16T50F)模拟失重和超重环境对温莪术内生真菌Gibberella moniliformis EZG0807进行诱变,以期得到代谢产物活性高、遗传稳定性好的菌株。诱变24 h、48 h和72 h后,通过稀释涂布平板法得到139株诱变菌株;经滤纸片抑菌法初筛和MTT法抗肿瘤细胞活性实验复筛,筛选出高活性诱变菌株M7226。采用群体传代的方法考察菌株M7226十代以内菌株的生长状况和次级代谢产物抗菌抗肿瘤活性的能力。结果显示活性内生真菌EZG0807经大梯度超导磁体诱变,筛选得到一株代谢产物活性高、遗传稳定性好的诱变菌株M7226,为后续次级代谢产物的分离纯化奠定基础,同时此法为真菌诱变育种提供了一种新的可供选择的方法。

关键词: 诱变超导磁体内生真菌    
Abstract:

In order to obtain a strain with good genetic stability and high activity of secondary metabolites, the wild-type strain Gibberella moniliformis EZG0807 was mutated by a large gradient superconducting magnet (JMT-16T50F) which can simulate micro and hyper-gravity environment. After G. moniliformis EZG0807 was mutated for 24 h, 48 h and 72 h under these conditions, 139 mutants were isolated with the spread plate method. Among them, a highly active mutant M7226 was selected according to the ability of antibacterial and antitumor activity with the filter paper and MTT method, respectively. Furthermore, the biomass of mycelia growth and the bioactivity of secondary metabolites of the strain M7226 within ten generations were investigated to detect its genetic stability. Accordingly, a highly active and stable heritable strain M7226 was got after mutagenesis with the superconducting magnet, which demonstrated that this superconducting magnet can be used as a new method for mutagenesis breeding and laid the foundation for the subsequent separation and purification of secondary metabolites.

Key words: Mutagenesis    Superconducting magnet    Endophytic fungus
收稿日期: 2014-03-18 出版日期: 2014-05-25
ZTFLH:  Q815  
通讯作者: 杨树林     E-mail: yshulin@mail.njust.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

严菊芬, 齐宁波, 王素萍, 赵健烽, 杨树林. 温莪术内生真菌Gibberella moniliformis EZG0807诱变及其诱变株遗传稳定性研究[J]. 中国生物工程杂志, 2014, 34(5): 23-29.

YAN Jv-fen, QI Ning-bo, WANG Su-ping, ZHAO Jian-feng, YANG Shu-lin. Mutagenesis and Mutant Genetic Stability of the Endophytic Fungus Gibberella moniliformis EZG0807 from Curcuma wenyujin. China Biotechnology, 2014, 34(5): 23-29.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20140504        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I5/23


[1] 刘录祥, 郑企成. 空间诱变与作物改良. 北京: 原子能出版社, 1997. Zhou L X, Zheng Q C. Space-induced mutations for crop improvement. Beijing: Atomic Energy Press, 1997.

[2] Qian A R, Yin D C, Yang P F, et al. Development of a ground-based simulated experimental platform for gravitational biology. IEEE Transactions on Applied Superconductivity, 2009, 19(2): 42-46.

[3] Qian A R, Yin D C, Yang PF, et al. Application of diamagnetic levitation technology in biological sciences research. IEEE Transactions on Applied Superconductivity, 2013, 23(1): 3600305.

[4] Hill R J, Larkin O J, Dijkstra C E, et al. Effect of magnetically simulated zero-gravity and enhanced gravity on the walk of the common fruitfly. Journal of the Royal Society Interface, 2012, 9(72): 1438-1449

[5] Liu Y M, Zhu D M, Strayer D M, et al. Magnetic levitation of large water droplets and mice. Advances in Space Research, 2010, 45(1): 208-213.

[6] Manzano A I, van Loon J J, Christianen PC, et al. Gravitational and magnetic field variations synergize to cause subtle variations in the global transcriptional state of Arabidopsis in vitro callus cultures. BMC Genomics, 2012, 13(1): 105.

[7] Herranz R, Larkin O J, Dijkstra C E, et al. Microgravity simulation by diamagnetic levitation: effects of a strong gradient magnetic field on the transcriptional profile of Drosophila melanogaster. BMC Genomics, 2012, 13(1): 52.

[8] Coleman C B, Gonzalez-Villalobos R A, Allen PL, et al. Diamagnetic levitation changes growth, cell cycle, and gene expression of Saccharomyces cerevisiae. Biotechnology and Bioengineering, 2007, 98(4): 854-863.

[9] Yan J F, Shang P, Zheng D, et al. Effect of simulated space gravity environment on Gibberella moniliformis EZG0807. Current Microbiology, 2012, 64(5): 469-476.

[10] 朱大诚, 徐彭. 医学功能学科实验指导. 第二版. 北京: 中国协和医科大学出版社, 2010. Zhu D C, Xu P. Manual of medical functional disciplines. 2nd. Beijing: Peking Union Medical College Press, 2010.

[11] Mossman T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assay. Journal of Immunological Methods, 1983, 65(1-2): 55-63.

[12] 高杨, 殷红, 孙宇宏, 等. 产小檗碱内生真菌的诱变. 菌物研究, 2008, 6(4): 216-219. Gao Y, Yin H, Sun Y, et al. Mutagenesis of a berberine-producing endophytic fungus. Journal of Fungal Research, 2008, 6(4): 216-219.

[13] 汪模辉, 邓天龙, 廖梦霞. 含砷金矿的磁场强化生物预氧化. 应用化学, 2000, 17(4): 362-365. Wang M H, Deng T L, Liao M X. Study on magnetization intensified bacterial preoxidation of arsenal gold ores. Chinese Journal of Applied Chemistry, 2000, 17(4): 362-365.

[14] 李国栋. 2003~2004年生物磁学研究和应用的新进展. 生物磁学, 2004, 4(4): 25-26. Li G D. New progrees of research and application of biomagnetism is 2003-2004. Biomagnetism, 2004, 4(4): 25-26.

[15] Koneracka M, Kopcansky P, Antalik M, et al. Immobilization of proteins and enzymes to fine magnetic particles. Journal of Magnetism and Magnetic Materials, 1999, 201(1): 427-430.

[16] Liu M, Gao H, Shang P, et al. Magnetic field is the dominant factor to induce the response of Streptomyces avermitilis in altered gravity simulated by diamagnetic levitation. PLOS One, 2011, 6(10): 1-5.

[17] Okudaa M, Saitoa K, Kamikadoa T, et al. New 7 T superconducting magnet system for bacterial cultivation. Cryogenics, 1995, 35(1): 41-47.

[18] Iwasaka M, Ikehata M, Miyakoshi J, et al. Strong static magnetic field effects on yeast proliferation and distribution. Bioelectrochemistry, 2004, 65: 59-68.

[19] Nakamura K, Okuno K, Ano T, et al. Effect of high magnetic field on the growth of Bacillus subtilis measured in a newly developed superconducting magnet biosystem. Bioelectrochemistry and Bioengergetics, 1997, 43(1): 123-128.

[20] Rosado H, Stapleton PD, Taylor P W. Effect of simulated microgravity on the virulence properties of the opportunistic bacterial pathogen Staphylococcus aureus. AIAA 57th International Astronautical Congress, IAC 2006, 1356-1363.

[21] Lanfang L, Rebecca D, Joan A, et al. Secondary metabolism in Brassica Rapa under hypergravity. 37th COSPAR Scientific Assembly. Montréal, Canada, 2008, 1753.

[1] 杨建伟, 薛正莲, 朱昊, 杨蒙, 王洲. ARTP辐照对磷脂酶A1重组质粒的诱变效应[J]. 中国生物工程杂志, 2017, 37(6): 78-85.
[2] 王曦,张光德,陈熙明,浦铜良. 溶葡球菌酶在乳酸克鲁维酵母中重组表达、诱变、优化及酶学研究*[J]. 中国生物工程杂志, 2017, 37(12): 49-58.
[3] 田淑翠, 牛延宁, 常忠义, 高红亮, 步国健, 金明飞. 常压室温等离子体(ARTP)诱变茂源链霉菌菌株[J]. 中国生物工程杂志, 2016, 36(9): 47-53.
[4] 吉美萍, 庞艳波, 付丽丽, 那日, 郭九峰, 王志永. γ-聚谷氨酸基因工程研究进展与展望[J]. 中国生物工程杂志, 2016, 36(6): 107-118.
[5] 张映曈, 陈海琴, 宋元达, 张灏, 陈永泉, 陈卫. 卷枝毛霉pyrG基因缺陷突变株的诱变筛选与鉴定[J]. 中国生物工程杂志, 2016, 36(3): 38-42.
[6] 郭玮婷, 张慧, 查东风, 黄汉峰, 黄静, 高红亮, 常忠义, 金明飞, 鲁伟. 产耐高温谷氨酰胺转胺酶菌株的快速筛选方法[J]. 中国生物工程杂志, 2015, 35(8): 83-89.
[7] 石漫漫, 乔长晟, 朱明, 李雪, 刘姗姗. 高产雷帕霉素的游动放线菌菌种的选育[J]. 中国生物工程杂志, 2015, 35(2): 72-77.
[8] 黎亮, 王泽建, 郭美锦, 储炬, 庄英萍, 张嗣良. 头孢菌素C产生菌的诱变育种及培养基优化[J]. 中国生物工程杂志, 2014, 34(8): 61-66.
[9] 陈宝珍, 李红梅, 王伟洁, 陈群毅. 产胸苷磷酸化酶菌株初筛方法的建立及其应用[J]. 中国生物工程杂志, 2014, 34(12): 78-83.
[10] 林俊涵, 邱东凤, 林晨. 丁醇产生菌育种研究进展[J]. 中国生物工程杂志, 2014, 34(12): 118-128.
[11] 曹旭鹏, 艾江宁, 刘亚男, 周建男, 吴佩春, 薛松. 基于常压室温等离子体技术的金藻诱变筛选方法[J]. 中国生物工程杂志, 2014, 34(12): 84-90.
[12] 乔长晟, 赵男, 石漫漫, 朱明, 李雪. 基于核糖体工程理论的常压室温等离子体诱变筛选多杀菌素高产菌[J]. 中国生物工程杂志, 2014, 34(1): 71-78.
[13] 薛正莲, 刘阳, 王洲, 马琦亚, 赵世光, 苏燕南. 基因组改组选育产酯化酶地衣芽孢杆菌[J]. 中国生物工程杂志, 2013, 33(8): 45-50.
[14] 刘明霞, 张凤英, 周强, 孙超, 陈卫平. 原生质体诱变选育高产异抗坏血酸菌株[J]. 中国生物工程杂志, 2013, 33(6): 30-37.
[15] 赵健烽, 辛兴, 卫培培, 骞爱荣, Akateh Tazifua Alfred, 商澎, 杨树林. 强磁场重力环境对Pseudomonas aeruginosa N1207的影响[J]. 中国生物工程杂志, 2013, 33(2): 27-33.