Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (5): 6-13    DOI: 10.13523/j.cb.20140502
研究报告     
DNA聚合酶与引物/模板的相互作用对PCR效率的影响
杨奇奇1, 张俊威1, 朱坚1,2, 刘建平1, 黄强1
1 复旦大学遗传工程国家重点实验室 生命科学学院 上海 200433;
2 上海美迪西生物医药有限公司 上海 201299
DNA Polymerase Binding to the Primer/template Duplex Affects the Efficiency of PCR
YANG Qi-qi1, ZHANG Jun-wei1, ZHU Jian1,2, LIU Jian-ping1, HUANG Qiang1
1 State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China;
2 Shanghai Medicilon Inc., Shanghai 201299, China
 全文: PDF(881 KB)   HTML
摘要:

PCR是体外酶促合成特异DNA片段的一种方法,引物的优劣直接关系到PCR的特异性与成功与否。传统的PCR引物设计软件基本上忽略了DNA聚合酶与引物/模板的亲和性对PCR效率的影响。为揭示DNA聚合酶与引物/模板的相互作用是否对PCR的效率有影响,通过构建Taq DNA 聚合酶与不同序列引物/模板DNA相互作用的三维结构模型,采用MM/GBSA方法计算复合物的结合自由能,以结合自由能为参数,为人血清白蛋白基因(Human Serum Albumin gene,HSA gene)和结核杆菌pyrF基因(Mycobacterium tuberculosis pyrF gene)设计了PCR引物。PCR实验结果表明,引物的PCR效率与结合自由能相关:引物与聚合酶的结合自由能越低,PCR实验的效率相对越高。这说明DNA聚合酶与引物/模板的相互作用对PCR效率有重要影响。因此,引物/模板DNA与聚合酶的结合自由能可以作为PCR引物设计的新参数。

关键词: PCRDNA聚合酶引物设计结合自由能分子建模    
Abstract:

Polymerase chain reaction (PCR) for DNA and RNA amplifications in vitro has a profound impact on modern molecular biology. Since design of proper primers is crucial for the success in PCR, many parameters have been used for primer design. However, the effect of DNA polymerase binding to primer/template duplex on PCR efficiency was not taken into account in conventional primer design programs. To reveal whether or not the DNA polymerase-primer/template binding affects the PCR efficiency, here we built structural models for the Taq DNA polymerase in complex with different primer/template sequences, and designed PCR primers according to relative binding free energies calculated by MM/GBSA method. We verified our primer design approach using Human Serum Albumin (HSA) gene and Mycobacterium tuberculosis pyrF gene, and found that the PCR efficiencies of different designed primers for both tested genes correlated well with the calculated binding free energies. Our finding indicates clearly that the DNA polymerase-primer/template binding affects the PCR efficiency significantly. Thus, the calculated binding free energy could be used as a new parameter to design efficient PCR primers.

Key words: PCR    DNA polymerase    Primer design    Binding free energy    Molecular modeling
收稿日期: 2014-03-18 出版日期: 2014-05-25
ZTFLH:  Q819  
基金资助:

上海市重点学科建设项目(B111),上海市自然科学基金(13ZR1402400)资助项目

通讯作者: 刘建平, 黄强     E-mail: jpliu@fudan.edu.cn;huangqiang@fudan.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

杨奇奇, 张俊威, 朱坚, 刘建平, 黄强. DNA聚合酶与引物/模板的相互作用对PCR效率的影响[J]. 中国生物工程杂志, 2014, 34(5): 6-13.

YANG Qi-qi, ZHANG Jun-wei, ZHU Jian, LIU Jian-ping, HUANG Qiang. DNA Polymerase Binding to the Primer/template Duplex Affects the Efficiency of PCR. China Biotechnology, 2014, 34(5): 6-13.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20140502        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I5/6


[1] Saiki R K, Gelfand D H, Stoffel S, et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science, 1988, 239 (4839): 487-491.

[2] Terpe K, Overview of thermostable DNA polymerases for classical PCR applications: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biot, 2013, 97 (24): 10243-10254.

[3] Schochetman G, Ou C Y, Jones W K, Polymerase chain reaction. J Infect Dis, 1988, 158 (6): 1154-1157.

[4] Dieffenbach C, Lowe T, Dveksler G. General concepts for PCR primer design. Genome Res, 1993, 3 (3): S30-S37.

[5] Burpo F J. A critical review of PCR primer design algorithms and crosshybridization case study. Biochemistry, 2001, 218 1-12.

[6] Han J. Polymerase Preference Index. US Patent,A1,2012100089, 2012-07-26.

[7] Li Y, Korolev S, Waksman G, Crystal structures of open and closed forms of binary and ternary complexes of the large fragment of Thermus aquaticus DNA polymerase I: structural basis for nucleotide incorporation, EMBO J., 1998, 17 (24): 7514-7525.

[8] Eom S H, Wang J, Steitz T A. Structure of Taq polymerase with DNA at the polymerase active site. Nature, 1996, 382 (6588): 278-281.

[9] Eswar N, Webb B, Marti-Renom M A, et al. Comparative protein structure modeling using Modeller. Curr. Protoc. Bioinformatics, 2006, 15:561-563.

[10] SaIi A, Blundell T. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol, 1993, 234 (3): 779-815.

[11] Chu S W, Noyes M B, Christensen R G, et al. Exploring the DNA-recognition potential of homeodomains. Genome Res, 2012, 22 (10): 1889-1898.

[12] Case D A, Cheatham T E, Darden T, et al. The Amber biomolecular simulation programs. J Comput Chem, 2005, 26 (16): 1668-1688.

[13] Hornak V, Abel R, Okur A, et al. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins, 2006, 65 (3): 712-725.

[14] Liu L A, Bradley P. Atomistic modeling of protein-DNA interaction specificity: progress and applications. Curr Opin Struc Biol, 2012, 22 (4): 397-405.

[15] Hou T, Wang J, Li Y, et al. Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model, 2010, 51 (1): 69-82.

[16] Huang Q, Korte T, Rachakonda PS, et al. Energetics of the loop-to-helix transition leading to the coiled-coil structure of influenza virus hemagglutinin HA2 subunits. Proteins, 2009, 74 (2): 291-303.

[17] Huang Q, Herrmann A. Calculating pH-dependent free energy of proteins by using Monte Carlo protonation probabilities of ionizable residues. Protein Cell, 2012, 3 (3): 230-238.

[18] Saito K, Hamano K, Nakagawa M, et al. Conformational analysis of human serum albumin and its non-enzymatic glycation products using monoclonal antibodies. J Biochem, 2011, 149 (5): 569-580.

[19] Arraiano C M, Cruz A A, Kushner S R. Analysis of the in vivo decay of the Escherichia coli dicistronic pyrF-orfF transcript: evidence for multiple degradation pathways. J Mol Biol, 1997, 268 (2): 261-272.

[20] Schneider C A, Rasband W S, Eliceiri K W. NIH Image to ImageJ: 25 years of image analysis. Nat Methods, 2012, 9 (7): 671-675.

[21] Golosov A A, Warren J J, Beese L S, et al. The mechanism of the translocation step in DNA replication by DNA polymerase I: a computer simulation analysis. Structure, 2010, 18 (1): 83-93.

[22] Steitz T A. DNA-and RNA-dependent DNA polymerases. Curr Opin Struc Biol, 1993, 3 (1): 31-38.

[1] 陈中伟,郑璞,陈鹏程,吴丹. 耐热植酸酶突变体的筛选及性质研究 *[J]. 中国生物工程杂志, 2021, 41(2/3): 30-37.
[2] 彭向雷,王烨,王丽男,苏彦斌,付远辉,郑妍鹏,何金生. 单引物PCR法引入定点突变 *[J]. 中国生物工程杂志, 2020, 40(8): 19-23.
[3] 黄昭鸿,黄运红,黄艳梅,龙中儿,山珊. 分型检测致泻性大肠埃希氏菌PCR技术研究进展 *[J]. 中国生物工程杂志, 2020, 40(7): 82-90.
[4] 刘丽艳,刘琪琦,张影,王升启. 双链探针实时荧光PCR核酸检测新技术研究*[J]. 中国生物工程杂志, 2020, 40(11): 28-34.
[5] 杨林,王柳月,李慧美,陈华波. 改进的多片段重叠延伸PCR制作基因多位点突变 *[J]. 中国生物工程杂志, 2019, 39(8): 52-58.
[6] 杜立,宿玲恰,吴敬. 提高源自Bacillus circulans 251的β-CGTase对麦芽糖亲和性及其在生产海藻糖中的应用 *[J]. 中国生物工程杂志, 2019, 39(5): 96-104.
[7] 金雪,宋敬臻,谢志平. 酿酒酵母GPCR蛋白Ste2亚细胞定位信号探索 *[J]. 中国生物工程杂志, 2019, 39(11): 39-53.
[8] 庄旻敏,贾晓会,施定基,朱嘉诚,冯思豫,何培民,贾睿. 转基因聚球藻7942中vp28基因表达效率及其光合特性分析[J]. 中国生物工程杂志, 2018, 38(4): 30-37.
[9] 张奇,姚琳,江艳华,李风铃,张媛,许东勤,朱文嘉,郭莹莹,王联珠,翟毓秀. 基于Qbeta噬菌体装甲RNA技术的诺如病毒RNA标准参考样品的研制[J]. 中国生物工程杂志, 2018, 38(1): 42-50.
[10] 张进,斯丹,杨致邦,熊玉霞,马廉举,李津阳,蒋仁举. 地塞米松降解新基因的探讨[J]. 中国生物工程杂志, 2018, 38(1): 15-24.
[11] 付理文, 张宇, 依含, 李雪, 朱乃硕. Taqman多重实时荧光PCR同步定量检测6种动物源性成分方法的建立[J]. 中国生物工程杂志, 2017, 37(9): 48-59.
[12] 赵治国, 崔强, 赵林立, 王海艳, 李刚, 刘来俊, 敖威华, 马彩霞. 微滴数字PCR技术应用进展[J]. 中国生物工程杂志, 2017, 37(6): 93-96.
[13] 徐振宇, 任红艳, 毕延震, 郑新民, 李莉, 张佳兰. 单细胞PCR体系的建立及其在CRISPR/Cas9靶点活性检测中的应用[J]. 中国生物工程杂志, 2017, 37(2): 74-80.
[14] 刘艳艳,李会荣,胡悦,范阳阳,李祥明,谭晴晴,吴家强,步迅. 饲料中狐狸、水貂、貉子和狗源性的五重实时荧光PCR检测方法的建立 *[J]. 中国生物工程杂志, 2017, 37(12): 67-76.
[15] 张丽丽, 徐碧玉, 刘菊华, 贾彩红, 张建斌, 金志强. 转香蕉MaASR1基因的拟南芥株系在干旱胁迫条件下的表达谱分析[J]. 中国生物工程杂志, 2017, 37(11): 59-73.