Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (11): 35-42    DOI: 10.13523/j.cb.2006045
技术与方法     
猪圆环病毒2型病毒样颗粒的高效组装技术研究*
王彦伟,李鹏昊,梁严予,关洋,逄文强(),田克恭()
国家兽用药品工程技术研究中心 洛阳 471000
Efficient Assembly of Virus-like Particles of Porcine Circovirus Type 2
WANG Yan-wei,LI Peng-hao,LIANG Yan-yu,GUAN Yang,PANG Wen-qiang(),TIAN Ke-gong()
National Research Center for Veterinary Medicine, Luoyang 471000, China
 全文: PDF(39103 KB)   HTML
摘要:

目的:探索猪圆环病毒2型(PCV2)病毒样颗粒(VLPs)的高效组装技术,提高VLPs的稳定性。方法:利用大肠杆菌表达PCV2 Cap蛋白自组装为VLPs,分析不同离子强度下VLPs的稳定性。利用切向流技术添加尿素,降低pH,可使VLPs解组装,利用硫酸铵分级沉淀、阴离子交换层析纯化获得Cap蛋白,去除尿素,提高离子强度和pH,实现VLPs的高效再组装。结果:PCV2 Cap蛋白自组装VLPs在150mmol/L NaCl下稳定性较差,而在500mmol/L NaCl下可提高VLPs的稳定性,但仍较易发生聚集,核酸含量均较高。在150mmol/L NaCl、300mmol/L尿素和pH 5.5的缓冲体系条件下,能够使VLPs解组装。经25%~50%饱和硫酸铵(V/V)分级沉淀粗纯,阴离子交换层析500mmol/L NaCl下洗脱获得精纯Cap蛋白,蛋白质纯度≥95%,并能够有效去除核酸。通过切向流技术去除体系中的尿素,并将NaCl浓度提高至1mol/L、pH提高至8.0,改变蛋白质表面静电荷分布,实现VLPs的高效、均一再组装,组装效率≥99%,回收率为65.85%,并明显提高VLPs的稳定性,能够稳定保存6个月以上。结论:利用硫酸铵分级沉淀、阴离子交换层析纯化获得Cap蛋白,去除尿素,提高离子强度和pH,实现VLPs的高效再组装。

关键词: 猪圆环病毒2型病毒样颗粒切向流技术高效组装稳定性    
Abstract:

Objective: To explore the efficient assembly technology of virus-like particles (VLPs) of porcine circovirus type 2 (PCV2) and improve the stability of VLPs. Methods: PCV2 Cap protein was expressed in E. coli and self-assembled into VLPs. The stability of VLPs under different ionic strength was analyzed. Disassembly of VLPs was achieved by addition of urea and decreasing pH with tangential flow filtration. Cap protein was obtained by ammonium sulfate precipitation and anion exchange chromatography. Efficient reassembly of VLPs was achieved by removing urea,increasing ionic strength and pH. Results: The stability of self-assembled PCV2 VLPs was poor under 150mmol/L NaCl, and was improved under 500mmol/L NaCl, but it was still easy to aggregate. The nucleic acid content was high. Under the condition of 150mmol/L NaCl, 300mmol/L urea and pH 5.5, VLPs was disassembled. The crude protein was precipitated by 25%-50% saturated ammonium sulfate (V/V) and eluted by anion exchange chromatography under 500mmol/L NaCl to obtain the purified Cap protein with over 95% purity and 65.85% recovery, which the nucleic acid was effectively removed. Urea was removed, the concentration of NaCl was increased to 1mol/L, and the pH was increased to 8.0 with tangential flow technology. The static charge distribution on the protein surface was changed, and efficiently and uniformly reassembly of VLPs was achieved with over 99% assembly efficiency. The stability of VLPs was significantly improved, and was stored stably for more than six months. Conclusion: PCV2 cap protein was obtained by ammonium sulfate fractional precipitation and anion exchange chromatography. Then, the urea was removed, the ionic strength and pH were improved to realize the efficient reassembly of VLPs.

Key words: Porcine circovirus type 2    Virus-like particles    Tangential flow filtration    Efficient assembly    Stabilization
收稿日期: 2020-06-04 出版日期: 2020-12-11
ZTFLH:  Q819  
基金资助: * 郑洛新自创区创新引领型产业集群专项(201200211200)
通讯作者: 逄文强,田克恭     E-mail: pangwq123@hotmail.com;vetvac@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王彦伟
李鹏昊
梁严予
关洋
逄文强
田克恭

引用本文:

王彦伟,李鹏昊,梁严予,关洋,逄文强,田克恭. 猪圆环病毒2型病毒样颗粒的高效组装技术研究*[J]. 中国生物工程杂志, 2020, 40(11): 35-42.

WANG Yan-wei,LI Peng-hao,LIANG Yan-yu,GUAN Yang,PANG Wen-qiang,TIAN Ke-gong. Efficient Assembly of Virus-like Particles of Porcine Circovirus Type 2. China Biotechnology, 2020, 40(11): 35-42.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2006045        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I11/35

图1  PCV2 rCap蛋白的纯化和自组装VLPs
图2  自组装PCV2 VLPs的稳定性
图3  PCV2 VLPs的解组装
图4  解组装PCV2 rCap蛋白的纯化结果
样品类型 体积(ml) 总蛋白质浓度
(mg/ml)
总蛋白质
(mg)
rCap蛋白浓度
(mg/ml)
总rCap蛋白
(mg)
回收率(%)
裂解液上清 80 6.12 489.6 0.41 32.8 100
硫酸铵粗纯 80 1.68 134.4 0.34 27.2 82.93
自组装VLPs 20 1.23 24.6 1.14 22.8 69.51
解组装rCap蛋白 20 1.20 24 1.08 21.6 65.85
表1  纯化阶段PCV2 rCap蛋白的回收率
图5  PCV2 VLPs的再组装
图6  再组装PCV2 VLPs的稳定性
[1] Gillespie J, Opriessnig T, Meng X J, et al. Porcine circovirus type 2 and porcine circovirus-associated disease. Journal of Veterinary Internal Medicine, 2009,23(6):1151-1163.
doi: 10.1111/j.1939-1676.2009.0389.x pmid: 19780932
[2] Chroboczek J, Szurgot I, Szolajska E, et al. Virus-like particles as vaccine. Acta Biochimica Polonica, 2014,61(3):531-539.
pmid: 25273564
[3] Crowther R A, Berriman J A, Curran W L, et al. Comparison of the structures of three circoviruses: chicken anemia virus, porcine circovirus type 2, and beak and feather disease virus. Journal of Virology, 2003,77(24):13036-13041.
doi: 10.1128/jvi.77.24.13036-13041.2003 pmid: 14645560
[4] 赵晓云. PCV2病毒样颗粒疫苗的制备及免疫原性研究. 扬州: 扬州大学, 2014.
Zhao X Y. The preparation and immunogencity study for PCV2 virus like particles vaccine. Yangzhou: Yangzhou University, 2014.
[5] Lipin D I, Chuan Y P, Lua L H, et al. Encapsulation of DNA and non-viral protein changes the structure of murine polyomavirus virus-like particles. Archives of Virology, 2008,153(11):2027-2039.
doi: 10.1007/s00705-008-0220-9 pmid: 18979257
[6] Zhao Q, Allen M J, Wang Y, et al. Disassembly and reassembly improves morphology and thermal stability of human papillomavirus type 16 virus-like particles. Nanomedicine: Nanotechnology, Biology and Medicine, 2012,8(7):1182-1189.
[7] Vicente T, Roldao A, Peixoto C, et al. Large-scale production and purification of VLP-based vaccines. Journal of Invertebrate Pathology, 2011,107(1):42-48.
[8] Jain N K, Sahni N, Kumru O S, et al. Formulation and stabilization of recombinant protein based virus-like particle vaccines. Advanced Drug Delivery Reviews, 2015,93(1):42-55.
[9] Xi X F, Mo X B, Xiao Y, et al. Production of Escherichia coli-based virus-like particle vaccine against porcine circovirus type 2 challenge in piglets: structure characterization and protective efficacy validation. Journal of Biotechnology, 2016,223(1):8-12.
[10] Trible B R, Suddith A W, Kerrigan M A, et al. Recognition of the different structural forms of the capsid protein determines the outcome following infection with porcine circovirus type 2. Journal of Virology, 2012,86(24):13508-13514.
doi: 10.1128/JVI.01763-12 pmid: 23035215
[11] Timmusk S, Fossum C, Berg M. Porcine circovirus type 2 replicase binds the capsid protein and an intermediate filament-like protein. Journal of General Virology, 2006,87(11):3215-3223.
[12] 侯成才, 何庆东, 王丽敏, 等. 猪圆环病毒2型Cap蛋白核定位序列对其在毕赤酵母中表达的影响. 中国兽医科学, 2014,44(6):563-568.
Hou C C, He Q D, Wang L M, et al. Effect of nuclear localization sequence on expression of Cap protein of porcine circovirus type 2 in Pichia pastoris. Chinese Veterinary Science, 2014,44(6):563-568.
[13] Chen Y, Zhang Y, Quan C, et al. Aggregation and antigenicity of virus like particle in salt solution:A case study with hepatitis B surface antigen. Vaccine, 2015,33(35):4300-4306.
doi: 10.1016/j.vaccine.2015.03.078 pmid: 25862298
[14] 杨延丽. 灭活病毒及病毒样颗粒的结构表征和稳定性研究. 北京: 中国科学院, 2015.
doi: 10.1126/science.abc5881 pmid: 32703908
Yang Y L. Characterization and stabilization of inactivated virus and virus like particles. Beijing: Chinese Academy of Science, 2015.
doi: 10.1126/science.abc5881 pmid: 32703908
[15] Shi L, Sanyal G, Ni A, et al. Stabilization of human papillomavirus virus-like particles by non-ionic surfactants. Journal of Pharmaceutical Sciences, 2005,94(7):1538-1551.
[16] Rajendar B, Sivakumar V, Sriraman R, et al. A simple and rapid method to monitor the disassembly and reassembly of virus-like particles. Analytical Biochemistry, 2013,440(1):15-17.
doi: 10.1016/j.ab.2013.05.009 pmid: 23711723
[17] Shen L, Zhou J, Wang Y, et al. Efficient encapsulation of Fe(3)O(4) nanoparticles into genetically engineered hepatitis B core virus-like particles through a specific interaction for potential bioapplications. Small, 2015,11(9-10):1190-1196.
doi: 10.1002/smll.201401952 pmid: 25155647
[18] He F, Joshi S B, Bosman F, et al. Structural stability of hepatitis C virus envelope glycoprotein E1: Effect of pH and dissociative detergents. Journal of Pharmaceutical Sciences, 2009,98(9):3340-3357.
doi: 10.1002/jps.21657 pmid: 19072857
[1] 陈修月,周文锋,何庆,苏冰,邹亚文. 噬菌体Qβ病毒样颗粒的制备、纯化及鉴定[J]. 中国生物工程杂志, 2021, 41(7): 42-49.
[2] 陈中伟,郑璞,陈鹏程,吴丹. 耐热植酸酶突变体的筛选及性质研究 *[J]. 中国生物工程杂志, 2021, 41(2/3): 30-37.
[3] 魏子翔,张柳群,雷磊,韩正刚,杨江科. 疏棉状嗜热丝孢菌(Thermomyces lanuginosus)脂肪酶的理性设计提高其活性和温度稳定性[J]. 中国生物工程杂志, 2021, 41(2/3): 63-69.
[4] 明玥,赵自通,王鸿磊,梁志宏. 基于序列和结构分析的酶热稳定性改造策略*[J]. 中国生物工程杂志, 2021, 41(10): 100-108.
[5] 陈东,李程程,史仲平. 植物乳杆菌胞外多糖包覆的高稳定性硒纳米颗粒的制备及其抗氧化活性的研究*[J]. 中国生物工程杂志, 2020, 40(9): 18-27.
[6] 谢航航,白红妹,叶超,陈永俊,袁明翠,马雁冰. 易发生聚集的重组HBcAg病毒样颗粒的纯化*[J]. 中国生物工程杂志, 2020, 40(5): 40-47.
[7] 赵晓艳,陈允妲,章雅倩,吴晓玉,王飞,陈金印. Myxococcus sp.V11海藻糖合酶TreS II分子改造 *[J]. 中国生物工程杂志, 2020, 40(3): 79-87.
[8] 王国强,于茵茵,曾华辉,王旭东,吴玉彬,尚立芝,李玉林,张怡青,张西西,张振强,王云龙. 基于MS2噬菌体病毒样颗粒的RT-PCR检测新型冠状病毒(SARS-CoV-2)质控品制备*[J]. 中国生物工程杂志, 2020, 40(12): 31-40.
[9] 吝建华,韩君,徐寒梅. PD-1/PD-L1免疫检查点抗体药物制剂稳定性开发[J]. 中国生物工程杂志, 2020, 40(10): 35-42.
[10] 陈子晗,周海胜,尹新坚,吴坚平,杨立荣. Amphibacillus xylanus谷氨酸脱氢酶基因工程菌培养条件优化 *[J]. 中国生物工程杂志, 2019, 39(10): 58-66.
[11] 白红妹,黄惟巍,刘存宝,孙文佳,杨旭,马雁冰. 共表达构建呈现人白细胞介素-13抗原肽的Qβ噬菌体病毒样颗粒 *[J]. 中国生物工程杂志, 2018, 38(5): 66-72.
[12] 张潘潘,许延吉,王之可,刘晓,李素霞. 重组猪胰蛋白酶及其R122位点突变体在毕赤酵母中的高效表达及其性质研究[J]. 中国生物工程杂志, 2018, 38(5): 56-65.
[13] 高红桃, 郭晓威, 孙丹, 解长睿, 王法微, 李海燕. 亚麻芥种子油体的提取及稳定性研究[J]. 中国生物工程杂志, 2017, 37(9): 98-104.
[14] 刘延娟, 李旭娟, 袁航, 刘娴, 高艳秀, 龚明, 邹竹荣. 融合酰基载体蛋白可增强大肠杆菌重组蛋白的可溶性和热稳定性[J]. 中国生物工程杂志, 2017, 37(7): 115-123.
[15] 程可利, 刘晓, 李素霞. 对SDS稳定的V8(V125T)蛋白酶突变体的高效表达及性质研究[J]. 中国生物工程杂志, 2017, 37(4): 56-67.