Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (1-2): 146-153    DOI: 10.13523/j.cb.1905007
综述     
肽核酸在病毒检测与治疗中的应用 *
孙恒1,王婧1,曾令高2,王建华1,**()
1 重庆大学生物工程学院 重庆 400044
2 重庆市食品药品检验检测研究院 重庆 401121
Application of Peptide Nucleic Acid in Virus Detection and Therapy
SUN Heng1,WANG Jing1,ZENG Ling-gao2,WANG Jian-hua1,**()
1 Bioengineering College of Chongqing University, Chongqing 400044, China
2 Chongqing Institute for Food and Drug Control, Chongqing 401121, China
 全文: PDF(577 KB)   HTML
摘要:

肽核酸(peptide nucleic acid, PNA)是以多肽骨架取代糖磷酸主链的寡核苷酸类似物,又称第三代反义核酸。PNA的电中性多肽骨架结构,使其保留类似糖磷酸链寡核苷酸高靶标亲和力的同时,比糖磷酸主链具有更强的酶稳定性和热稳定性,已成为当今寡核苷酸类似物研究的热点。一方面,PNA对病毒的复制与突变水平具有的快速、有效和准确的检测性能,对疾病的进一步治疗具有重要意义;另一方面,基于PNA的序列特异性和剂量依赖性,能在基因水平上对病毒的生命周期进行特异性的调控,从而能更有效地实现抑制病毒在宿主细胞中生存和复制的目的。结合近十年来的文献,综述了PNA应用于不同病毒的检测及病毒性疾病治疗的最新进展和作用机制,以期为PNA的临床产品研发提供新的思路。

关键词: 肽核酸检测抗病毒    
Abstract:

Peptide nucleic acid (PNA) is an oligonucleotide analog that replaces the sugar phosphate backbone with polypeptide backbone, and known as a third-generation antisense nucleic acid. The electrically neutral polypeptide backbone structure of PNA enables it to retain the high target affinity of the sugar phosphate chain oligonucleotide, and at the same time, it has stronger enzyme stability and thermal stability than the sugar phosphate backbone, which has become the hotspot in the research of oligonucleotide analogues. On the one hand, the rapid, effective and accurate detection performance of PNA on virus replication and mutation level makes it of great significance for further treatment of diseases. On the other hand, the life cycle of the virus is regulated by the PNA based on its sequence specificity and dose dependency at the gene level. Therefore, as to effective inhibit the survival and replication of the virus in the host cell. The latest progress and mechanism of PNA in the detection of different viruses and the treatment of viral diseases has been reviewed based on the literature of the past decade, which is expected to provide new guidances and ideas for the development of clinical products of peptide nucleic acids.

Key words: Peptide nucleic acid    Detection    Antiviral
收稿日期: 2019-05-07 出版日期: 2020-03-27
ZTFLH:  Q819  
基金资助: * 国家自然科学基金委员会国家重大科研仪器研制项目(21827812);科技部“十三五”重大新药创制专项子课题资助项目(2017ZX09101001);重庆市社会事业与民生保障科技创新专项(cstc2017shms-xdny0033);重庆市技术创新与应用示范专项社会民生类重点研发项目(cstc2018jscx-mszdX0101)
通讯作者: 王建华     E-mail: wjh@cqu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
孙恒
王婧
曾令高
王建华

引用本文:

孙恒,王婧,曾令高,王建华. 肽核酸在病毒检测与治疗中的应用 *[J]. 中国生物工程杂志, 2020, 40(1-2): 146-153.

SUN Heng,WANG Jing,ZENG Ling-gao,WANG Jian-hua. Application of Peptide Nucleic Acid in Virus Detection and Therapy. China Biotechnology, 2020, 40(1-2): 146-153.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.1905007        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I1-2/146

图1  PNA和DNA的结构
PNA名称 序列(N→C端) 靶标 检测限 应用 参考文献
PANArray ACATCATCCATATAAC 逆转录酶M204V 102cps/ml HBV [12]
PNA-YIDD1 GTTATATCGATGATGTGG 逆转录酶204 0.01% HBV [11]
PNA-QCM TCCTTTTTT-OOO-TTTTTTCCT 基因组DNA序列 8.6pg/L HBV [14]
PNA-3a CACACATATCACCC 3a核心/E1区 1.8×10-12mol HCV [15]
PNA-SAM ATGTACCCCATGAGGTCGGC 核心/E1区 9.5pg/μl HCV [16]
PNA-HCV CCCAATTATACTTGCGGC M2基因 5% H1N1 [17]
bisPNA-AZO TCTCTTCC-AZO-CCTTCTCTTCCAGGA NS基因 6.0×104~6.0×105pfu/ml H1N1 [18]
PNA-ISH CTGGCTTTAATTTTA NL43WC001基因pol区 HIV [19]
表1  用于病毒检测中PNA的碱基序列
PNA名称 序列(5'-3') 靶标 IC50 应用 参考文献
PNA 2052 TAGACGTAAAGATAC 衣壳化信号ε 10nmol DHBV [22]
PNA 2053 GCAATGTAGACGTAA 衣壳化信号ε 10nmol DHBV [22,25]
PNA-DR GCAGAGGTGAA pgRNA DR序列 HBV [27]
肽-asPNA-寡核苷酸支架 AGGTGAAAAAGTTGCAT HBV DNA 1 814~1 830 HBV [28]
PNA 6 TACGAGACCTCCCGGGG IRES 314~330 HCV [30]
PNA 10 GTGCTCATGG IRES的IV环区域 54nmol HCV [31]
PNA-SL3 AGATGGAGCCACC X-RNA SL结构1~13 HCV [32]
PNA-SL3-15 TAAGATGGAGCCACC X-RNA SL结构1~15 HCV [32,41]
dbPNA TLTTTQTLLL dsRNA 多种IAV亚型 [34]
TiO2·PL·DNA/PNA GCAAAAGCAGGGTAGA NP基因 3μg/ml H3N2 [35]
PNA-TAR TCCCAGGCTCAGATCT TAR 0.8μmol HIV [37-39]
PNA J3U5 TCGCGGCTTCATACA 3'-UTR 10 931~10 945 JEV [40]
PNA J3U6 TCTCGCGGCTTCATACA 3'-UTR 10 931~10 947 JEV [40]
PNA J3U2 TCGGCGCTCTGTGCC 3'-UTR 10 928~10 942 JEV [40-41]
FS PNA AGCCCTGTAGACGAC PRF 13 458~13 472 4.4μmol SARS-CoV [41]
表2  用于病毒治疗中的PNA碱基序列
图2  PNA类似物结构[29]
[1] Gupta A, Mishra A, Puri N . Peptide nucleic acids: Advanced tools for biomedical applications. Journal of Biotechnology, 2017,259:148-159.
[2] 曾芳, 王建华, 刘春冬 . 修饰性肽核酸的合成研究进展. 中国药学杂志, 2015,50(22):1936-1945.
Zeng F, Wang J H, Liu C D . Progress of synthesis of modified peptide nucleic acid. Chin Pharm, 2015,50(22):1936-1945.
[3] 刘春冬, 王建华, 曾芳 . 修饰性肽核酸的细胞转运. 生物工程学报, 2016,32(3):292-305.
Liu C D, Wang J H, Zeng F . Cellular delivery of modified peptide nucleic acids: a review. Chinese Journal of Biotechnology, 2016,32(3):292-305.
[4] Nielsen P E, Egholm M, Berg R H , et al. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science, 1991,254(5037):1497-1500.
[5] Egholm M, Buchardt O, Christensen L , et al. PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. Nature, 1993,365(6446):566-568.
[6] Dean D A . Peptide nucleic acids: versatile tools for gene therapy strategies. Advanced Drug Delivery Reviews, 2000,44(2):81-95.
[7] Sharma C, Awasthi S K . Versatility of peptide nucleic acids (PNAs): role in chemical biology, drug discovery and origins of life. Chemical Biology & Drug Design, 2016,89(1):16-37.
[8] Demidov V V, Potaman V N, Frank-Kamenetskii M D , et al. Stability of peptide nucleic acids in human serum and cellular extracts. Biochemical Pharmacology, 1994,48(6):1310-1313.
[9] Quijano E, Bahal R, Ricciardi A , et al. Therapeutic peptide nucleic acids: principles, limitations, and opportunities. Yale Journal of Biology & Medicine, 2017,90(4):583-598.
[10] Liu C D, Wang J H, Huang S , et al. Self-assembled nanoparticles for cellular delivery of peptide nucleic acid using amphiphilic N,N,N-trimethyl-O-alkyl chitosan derivatives. Journal of Materials Science Materials in Medicine, 2018,29:114.
[11] Shuhei H, Yoichi Y, Shigeru Y , et al. Sensitive assay for quantification of hepatitis B virus mutants by use of a minor groove binder probe and peptide nucleic acids. Journal of Clinical Microbiology, 2010,48(12):4487-4494.
[12] Jang H, Kim J, Choi J J , et al. Peptide nucleic acid array for detection of point mutations in hepatitis B virus associated with antiviral resistance. Journal of Clinical Microbiology, 2010,48(9):3127-3131.
[13] Choi Y J, Hong S K, Lee S H , et al. Evaluation of peptide nucleic acid array for the detection of hepatitis B virus mutations associated with antiviral resistance. Archives of Virology, 2011,156(9):1517-1524.
[14] Yao C Y, Zhu T Y, Tang J , et al. Hybridization assay of hepatitis B virus by QCM peptide nucleic acid biosensor. Biosensors & Bioelectronics, 2008,23(6):879-885.
[15] Pournaghi-Azar M H, Ahour F, Hejazi M S . Direct detection and discrimination of double-stranded oligonucleotide corresponding to hepatitis C virus genotype 3a using an electrochemical DNA biosensor based on peptide nucleic acid and double-stranded DNA hybridization. Analytical & Bioanalytical Chemistry, 2010,397(8):3581-3587.
[16] Ahour F, Pournaghi-Azar M H, Alipour E , et al. Detection and discrimination of recombinant plasmid encoding hepatitis C virus core/E1 gene based on PNA and double-stranded DNA hybridization. Biosensors & Bioelectronics, 2013,45:287-291.
[17] Tsao K C, Chiou C C, Chen T L , et al. Detection of low copies of drug-resistant influenza viral gene by a single-tube reaction using peptide nucleic acid as both PCR clamp and sensor probe. J Microbiol Immunol Infect, 2014,47(3):254-256.
[18] Kaihatsu K, Sawada S, Nakamura S , et al. Sequence-specific and visual identification of the influenza virus NS gene by azobenzene-tethered bis-peptide nucleic acid. PLoS One, 2013,8(5):e64017.
[19] Murakami T, Hagiwara T, Yamamoto K , et al. A novel method for detecting HIV-1 by non-radioactive in situ hybridization: application of a peptide nucleic acid probe and catalysed signal amplification. Journal of Pathology, 2001,194(1):130-135.
[20] Zhao C, Hoppe T, Setty M K H G , et al. Quantification of plasma HIV RNA using chemically engineered peptide nucleic acids. Nature Communications, 2014,5(4):5079.
[21] Ndeboko B, Lemamy G J, Nielsen P E , et al. Therapeutic potential of cell penetrating peptides (CPPs) and cationic polymers for chronic hepatitis B. International Journal of Molecular Sciences, 2015,16(12):28230-28241.
[22] Robaczewska M, Narayan R, Seigneres B , et al. Sequence-specific inhibition of duck hepatitis B virus reverse transcription by peptide nucleic acids (PNA). Journal of Hepatology, 2005,42(2):180-187.
[23] Koppelhus U, Shiraishi T, Zachar V , et al. Improved cellular activity of antisense peptide nucleic acids by conjugation to a cationic peptide-lipid(CatLip)domain. Bioconjugate Chemistry, 2008,19(8):1526-1534.
[24] Abdul F, Ndeboko B, Buronfosse T , et al. Potent inhibition of late stages of hepadnavirus replication by a modified cell penetrating peptide. PLoS One, 2012,7(11):e48721.
[25] Ndeboko B, Ramamurthy N, Lemamy G J , et al. Role of cell-penetrating peptides in intracellular delivery of peptide nucleic acids targeting hepadnaviral replication. Mol Ther Nucleic Acids, 2017,9:162-169.
[26] Ren X D, Nie H, Guo J T . HBV drug resistance development, testing, and prevention. Current Hepatitis Reports, 2010,9(4):223-230.
[27] Zeng Z, Han S S, Hong W , et al. A Tat-conjugated peptide nucleic acid Tat-PNA-DR Inhibits hepatitis B virus replication in vitro and in vivo by targeting LTR direct repeats of HBV RNA. Molecular Therapy Nucleic Acids, 2016,5(3):e295.
[28] Zhao X L, Chen B C, Han J C , et al. Delivery of cell-penetrating peptide-peptide nucleic acid conjugates by assembly on an oligonucleotide scaffold. Scientific Reports, 2015,5:17640.
[29] Al-Harbi R A K, Abdel-Rahman A H . Synthesis and anti-hepatitis B virus activity of new pyrimidine peptide nucleic acid analogs. Chemistry of Heterocyclic Compounds, 2012,47(10):1290-1297.
[30] Nulf C J, Corey D . Intracellular inhibition of hepatitis C virus (HCV) internal ribosomal entry site (IRES)-dependent translation by peptide nucleic acids (PNAs) and locked nucleic acids (LNAs). Nucleic Acids Research, 2004,32(13):3792-3798.
[31] Alotte C, Martin A, Caldarelli S A , et al. Short peptide nucleic acids (PNA) inhibit hepatitis C virus internal ribosome entry site (IRES) dependent translation in vitro. Antiviral Research, 2008,80(3):280-287.
[32] Ahn D G, Shim S B, Moon J E , et al. Interference of hepatitis C virus replication in cell culture by antisense peptide nucleic acids targeting the X-RNA. Journal of Viral Hepatitis, 2011,18(7):e298-e306.
[33] Friedland B . In vitro antiviral activity of a peptide-nucleic acid solution against the human immunodeficiency virus and influenza A virus. Journal of the Royal Society of Health, 1991,111(5):170-171.
[34] Kesy J, Patil K M, Kumar S R , et al. A short chemically modified dsRNA-binding PNA (dbPNA) inhibits influenza viral replication by targeting viral RNA panhandle structure. Bioconjugate Chemistry, 2019,30(3):931-943.
[35] Amirkhanov R N, Mazurkova N A, Amirkhanov N V , et al. Composites of peptide nucleic acids with titanium dioxide nanoparticles. IV. Antiviral activity of nanocomposites containing DNA/PNA duplexes. Russian Journal of Bioorganic Chemistry, 2015,41(2):140-146.
[36] Pandey V N, Upadhyay A, Chaubey B . Prospects for antisense peptide nucleic acid (PNA) therapies for HIV. Expert Opin Biol Ther, 2009,9(8):975-989.
[37] Chaubey B, Tripathi S, Pandey V N . Single acute-dose and repeat-doses toxicity of anti-HIV-1 PNA TAR-penetratin conjugate after intraperitoneal administration to mice. Oligonucleotides, 2008,18(1):9-20.
[38] Upadhyay A, Ponzio N M, Pandey V N . Immunological response to peptide nucleic acid and its peptide conjugate targeted to transactivation response (TAR) region of HIV-1 RNA genome. Oligonucleotides, 2008,18(4):329-335.
[39] Das I, Désiré J, Manvar D , et al. A peptide nucleic acid-aminosugar conjugate targeting transactivation response element of HIV-1 RNA genome shows a high bioavailability in human cells and strongly inhibits tat-mediated transactivation of HIV-1 transcription. Journal of Medicinal Chemistry, 2012,55(13):6021-6032.
[40] Yoo J S, Kim C M, Kim J H , et al. Inhibition of Japanese encephalitis virus replication by peptide nucleic acids targeting cis-acting elements on the plus- and minus-strands of viral RNA. Antiviral Research, 2009,82(3):122-133.
[41] Ahn D G, Lee W, Choi J K , et al. Interference of ribosomal frameshifting by antisense peptide nucleic acids suppresses SARS coronavirus replication. Antiviral Res, 2011,91(1):1-10.
[42] 王建华, 郭泽琴 . 肽核酸在分子生物学技术中的应用. 中国生物工程杂志, 2013,33(01):90-94.
Wang J H, Guo Z Q . Application of peptide nucleic acid in molecular biotechnology. China Biotechnology, 2013,33(1):90-94.
[43] Liu C D, Wang J H, Xie Y , et al. Synthesis and DNA/RNA complementation studies of peptide nucleic acids containing 5-halouracils. Medchemcomm, 2016,8(2):385-389.
[1] 康可人,袁强,梁飞敏,伍丽贤. 苄非他明人工抗原合成[J]. 中国生物工程杂志, 2021, 41(7): 58-65.
[2] 陈晨,胡劲超,曹姗姗,门冬. 新型冠状病毒抗原快速检测研发现状及展望*[J]. 中国生物工程杂志, 2021, 41(6): 119-128.
[3] 马巧妮,王萌,朱兴全. 重组酶介导扩增技术及其在病原微生物快速检测中的应用进展*[J]. 中国生物工程杂志, 2021, 41(6): 45-49.
[4] 李帅鹏,任和,安展飞,杨艳坤,白仲虎. 血栓调节蛋白化学发光免疫分析检测方法的建立*[J]. 中国生物工程杂志, 2021, 41(4): 30-36.
[5] 张雪洁,汤家宝,李廷栋,葛胜祥. 单分子免疫检测技术研究进展*[J]. 中国生物工程杂志, 2021, 41(4): 47-54.
[6] 连将儒,马伟芳. DNA水凝胶应用于环境样品快速检测的研究进展 *[J]. 中国生物工程杂志, 2021, 41(2/3): 107-115.
[7] 周紫卉,刘晓娴,黄昊,肖瑞,祁克宗,王升启. 基于纳米信号标签的表面增强拉曼散射在病原菌检测中的应用 *[J]. 中国生物工程杂志, 2021, 41(2/3): 70-77.
[8] 张正燕,陈钰,宋丽杰,苏政权,张海燕. 场效应晶体管生物传感器在生物医学检测中的应用研究进展*[J]. 中国生物工程杂志, 2021, 41(10): 73-88.
[9] 吕一凡,李更东,薛楠,吕国梁,时邵辉,王春生. LbCpf1基因的原核表达、纯化与体外切割检测 *[J]. 中国生物工程杂志, 2020, 40(8): 41-48.
[10] 贾小梅,倪莉,罗洪艳,丁红雷,王豪举. 猪多杀性巴氏杆菌检测技术研究进展 *[J]. 中国生物工程杂志, 2020, 40(8): 49-54.
[11] 黄昭鸿,黄运红,黄艳梅,龙中儿,山珊. 分型检测致泻性大肠埃希氏菌PCR技术研究进展 *[J]. 中国生物工程杂志, 2020, 40(7): 82-90.
[12] 张玲梅,王豪举. 猪链球菌检测技术研究进展 *[J]. 中国生物工程杂志, 2020, 40(4): 84-91.
[13] 潘彤彤,陈永平. 重型/危重型新型冠状病毒肺炎关键治疗技术研究进展[J]. 中国生物工程杂志, 2020, 40(1-2): 78-83.
[14] 施慧琳,王玥,苏燕,徐萍. 人类微生物组产业发展态势及建议[J]. 中国生物工程杂志, 2019, 39(6): 97-103.
[15] 陈亮,高姗,毛海央,王云翔,冀斌,金志颖,康琳,杨浩,王景林. 超大表面积自驱动微流控芯片的设计与制备 *[J]. 中国生物工程杂志, 2019, 39(6): 17-24.