中国生物工程杂志, 2024, 44(2-3): 142-152 DOI: 10.13523/j.cb.2308022

综述

细胞免疫治疗载体技术的现状与展望*

刘秀盈1, 刘静静1, 崔鑫铭1, 于梦圆1, 史渊源1,2, 王建勋,1,2,**

1 北京中医药大学生命科学学院 北京 100029

2 深圳细胞谷生物医药有限公司 深圳 518000

Current Status and Prospects of Cellular Immunotherapy Vector Technology

LIU Xiuying1, LIU Jingjing1, CUI Xinming1, YU Mengyuan1, SHI Yuanyuan1,2, WANG Jianxun,1,2,**

1 College of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China

2 Shenzhen Cell Valley Biopharmaceutical Co., Ltd, Shenzhen 518000, China

通讯作者: **电子信箱:jianxun.Wang@bucm.edu.cn

收稿日期: 2023-08-15   修回日期: 2023-09-8  

基金资助: 高层次人才科研启动经费.  9011451310032

Received: 2023-08-15   Revised: 2023-09-8  

摘要

近年我国细胞免疫治疗发展迅速,从零基础直追国际前沿水平。在细胞免疫疗法蓬勃发展的背后,将基因导入靶细胞并使其进行表达的基因递送载体技术的支持不可或缺。如何更加安全高效地进行基因转递也是困扰行业发展的重要瓶颈之一。通过总结目前细胞治疗领域主要应用的载体技术发展现状,并对比已经上市产品的工业化生产流程,以期为后续载体技术的发展提供参考。

关键词: 细胞免疫治疗 ; 基因递送载体 ; 工业化生产

Abstract

In recent years, China’s cellular immunotherapy has developed rapidly, catching up from zero to the international level of excellence. Behind the booming development of cellular immunotherapy, the support of vector technology for gene delivery is indispensable. As a medium for introducing genes into target cells and enabling their expression, vector technology is also one of the major bottlenecks in the development of the industry in terms of how to carry out gene transfer safely and efficiently. By summarizing the current status of the development of vector technology for major applications in the field of cell therapy and comparing the industrialized production process of already marketed products, we hope to provide a reference for the further development of vector technology.

Keywords: Cellular immunotherapy ; Gene delivery vectors ; Industrial production

PDF (0KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

刘秀盈, 刘静静, 崔鑫铭, 于梦圆, 史渊源, 王建勋. 细胞免疫治疗载体技术的现状与展望*. 中国生物工程杂志[J], 2024, 44(2-3): 142-152 DOI:10.13523/j.cb.2308022

LIU Xiuying, LIU Jingjing, CUI Xinming, YU Mengyuan, SHI Yuanyuan, WANG Jianxun. Current Status and Prospects of Cellular Immunotherapy Vector Technology. Journal of Chinese Biotechnology[J], 2024, 44(2-3): 142-152 DOI:10.13523/j.cb.2308022

2023年6月30日,由信达生物与驯鹿生物共同开发及商业化的细胞免疫治疗产品伊基奥仑赛注射液(商品名:福可苏)通过优先审评审批程序附条件获得国家药监局审批上市许可。福可苏是国内首个获批靶向B细胞成熟抗原(BCMA)的嵌合抗原受体T细胞治疗(CAR-T),也是第一款完全意义上本土发展的产品。细胞治疗作为一种治疗手段已经在临床崭露头角,2019年美国癌症年会就将其与手术、放疗、化疗和靶向治疗并列为癌症治疗的五大支柱[1]。在其他疾病方面,细胞免疫治疗也逐渐成为发展的重要方向,也是继小分子、大分子靶向疗法之后的新一代精准疗法,其中基因编辑的过程非常重要,将外源基因导入免疫细胞中需要合适的载体技术。例如,CAR-T细胞生产过程中,将CAR基因转导进入T细胞所采用的载体被认为是制造过程中的关键原材料。理想载体应具备以下几个特点:(1)有足够的空间来递送大片段的治疗基因;(2)具有高转导效率;(3)可以长期稳定表达转基因;(4)具有较低的免疫原性或致病性,不会引起炎症;(5)具备大规模的生产能力。本文将对细胞治疗载体技术的现状进行综述并提出展望。

1 细胞免疫治疗

图1所示,细胞免疫治疗是指通过采集人体的免疫细胞,经过体外培养以富集扩增其中某种免疫细胞或增加靶向性杀伤功能,然后再回输回患者体内,从而杀灭患者体内的病灶,通常是癌组织、病变细胞或病原体等[2]。与传统医学借助外源药物来干预病原不同,细胞治疗开创了一种全新的医疗理念,即将人体自身作为治疗的基础。免疫细胞是人体的防卫军,是人体免疫系统的重要组成部分,负责杀灭对人体有害的病原体、病变细胞或癌细胞,免疫细胞包括人体的T细胞、NK细胞、B细胞、树突状细胞(DC)等。细胞免疫疗法正是利用了这种强大的功能,将其改造为具有持久功能的“活药”。1984年,Rosenberg发明了LAK细胞疗法并于11月获美国食品药品监督管理局(FDA)批准进行临床试验,其被誉为“过继性细胞疗法的开创者”[3]。世界上第一位接受 CAR-T 细胞治疗的白血病患者,Emily Whitehead至今已经无癌生存了11年,这在细胞免疫疗法之前是不可想象的。经过近40年的发展,细胞免疫疗法不仅有效果良好已经上市的产品,还有更多在研的产品进入临床试验阶段,表1总结了细胞免疫治疗的主要发展历程。

图1

图1   细胞免疫治疗的流程

Fig.1   Process of cellular immunotherapy


表1   细胞免疫治疗的发展

Table 1  Development of cellular immunotherapy

代数主要产品特点
第一代淋巴因子激活的杀伤细胞疗法(LAK)非特异性,广谱杀伤能力
第二代细胞因子诱导的杀伤细胞疗法(CIK)、肿瘤浸润淋巴细胞(TIL)非特异性,广谱杀伤能力
第三代细胞因子诱导的杀伤细胞-树突状细胞混合疗法(DC-CIK)非特异性,混合培养能够增强NKT的广谱杀伤能力
第四代嵌合抗原受体T细胞、NK细胞或巨噬细胞治疗(CAR-T、CAR-NK、CAR-M),T细胞受体嵌合T细胞治疗(TCR-T),树突状细胞疗法(DC-based immunotherapy)特异性,绕过了抗原呈递过程,直接靶向性杀伤高表达靶抗原的细胞或组织,能够在体内长期存活,或能够直接诱导多种细胞进行免疫应答

新窗口打开| 下载CSV


2 细胞免疫治疗中的基因递送载体技术

纵观细胞免疫疗法,特异性越来越强是很明显的发展趋势,为了增强靶向性的杀伤功能,必须对提取的免疫细胞进行基因改造,这就意味着高效安全的基因递送载体技术不可或缺。2020年诺贝尔化学奖得主Doudna[4]认为递送仍然是基因编辑体细胞治疗的最大瓶颈。以目前细胞免疫治疗中最火爆的CAR-T项目为例,表2总结了在我国和美国已经上市的细胞产品采用的基因递送载体技术,主要集中为两类病毒载体,即逆转录病毒载体和慢病毒载体。但随着新技术的发展,在研的细胞免疫治疗技术中采用的底层载体技术远远不止上述两种,下文对目前比较常见递送载体进行简要介绍。

表2   上市CAR-T产品信息(中国、美国)

Table 2  Information on listed CAR-T products (China, USA)

上市时间商品名靶点载体
2017年8月KymriahCD19慢病毒载体
2017年10月YescartaCD19逆转录病毒载体
2020年7月TecartusCD19逆转录病毒载体
2021年2月BreyanziCD19慢病毒载体
2021年3月AbecmaBCMA慢病毒载体
2021年6月奕凯达CD19逆转录病毒载体
2021年9月倍诺达CD19慢病毒载体
2022年2月CarvyktiBCMA慢病毒载体
2023年6月福可苏BCMA慢病毒载体

新窗口打开| 下载CSV


2.1 逆转录病毒载体

逆转录病毒(retroviruses,RV)又称反转录病毒,是一种RNA病毒,其两端为长末端重复序列(LTR)[5]。该病毒呈球形,有包膜,表面有刺突,颗粒比较大,直径为80~100 nm,是一种包膜蛋白壳,包含病毒基因组[6]。衣壳周围的包膜结构实际上是起源于宿主细胞的脂质双层,含有病毒编码的表面糖蛋白和跨膜糖蛋白。逆转录病毒复制有一个必需步骤:在逆转录酶的作用下,其基因组RNA可被逆转录为前病毒DNA(proviral DNA),随后借助整合酶的作用通过前病毒两端LTR插入到宿主细胞的基因组中[7]。一般来说,简单的逆转录病毒包含三个主要编码片段和一个小型编码域。主要片段包含三个基因——gagpolenv,gag编码病毒的核心蛋白、pol编码逆转录酶、env编码病毒外膜糖蛋白[8]。作为最早被开发的一类病毒载体,通过多次改进,目前逆转录病毒载体(retroviral vector,RVV)仅具备单次感染能力,感染的宿主细胞不能产生可以复制的病毒,病毒载体的致病性大为下降。

主要上市和在研的产品大部分采用的是γ-逆转录病毒载体,现有的逆转录病毒载体主要分为三型[9]。第一型是双表达(double expression, DE)载体,含两个外源基因,一个基因取代gag/pol片段,表达为非剪接的RNA形式,且不含内含子序列。第二型是具有内部启动子的载体,由于病毒载体内部有一个启动子,不同类型的启动子导致病毒的效价不同,选择合适的启动子可以提高10~50倍病毒效价,在较难转导的原代淋巴样细胞和骨髓祖细胞中有较广应用。第三型被称为是自灭活载体(self-inactivating vector,SIN),该载体中3'LTR缺失增强子和启动子序列,它们的缺失并不影响病毒功能,但可以使病毒载体整合入靶细胞染色体时本身不具备活性,提高安全性。

目前逆转录病毒载体生产制备的主要流程为:目的基因获取→构建质粒测序验证→病毒瞬时包装→筛选得到稳转细胞系→扩大培养→收获病毒上清液→纯化病毒。科研级逆转录病毒载体的生产过程无须筛选稳转细胞系,过程较为简单,收获病毒产量较低,进行浓缩后可供科学研究使用。逆转录病毒载体工业化生产工艺更加完善,通过转染一种包装细胞并用这些细胞产生的病毒上清液转导另外一种包装细胞,然后筛选第二种包装细胞的稳转细胞系来收集逆转录病毒载体[10]。瞬时转染的病毒载体存在较大异质性[11],通过筛选稳转细胞系甚至挑选单克隆细胞库,使生产病毒载体的细胞基因水平稳定、平均[12],使产生的病毒载体产品质量稳定,工艺放大容易,单个批次生产的逆转录病毒载体可供多达1 000名患者进行细胞治疗,这种大规模生产大大节约了成本[13]。采用逆转录病毒载体工艺已经上市的产品均定价较低,受益人群更多,从长远应用和效益来看,逆转录病毒载体具有很大优势。一项研究对1997年包装并储存的逆转录病毒载体上清液和2008年新鲜包装的病毒载体进行了对比,虽然10年的储存略降低了逆转录病毒载体的质量,但靶细胞的转导效率和增殖能力与2008年的对比并未显著下降,这说明逆转录病毒载体具有很强的稳定性[14]

2.2 慢病毒载体

慢病毒属于逆转录病毒科,是一种RNA病毒,是直径为80~120 nm的球形颗粒。它存活和功能所需的基本基因是gagpolenv,gag编码结构蛋白,pol编码逆转录和整合到宿主细胞基因组所需的酶,env编码病毒包膜糖蛋白[15]。慢病毒载体(lentivirus vector,LVV)是一类改造自人类免疫缺陷病毒(HIV)的病毒载体[16],生产病毒滴度浓缩后可高达109 TU/mL,通常用于细胞和基因治疗[17]。它能够感染分裂期与非分裂期细胞,可利用逆转录酶将外源基因整合到宿主基因组中,并长期稳定表达,如神经元、造血干细胞和免疫系统细胞[18]

现有的慢病毒载体主要可以分为三代:第一代慢病毒载体系统由env包装质粒、异源包膜蛋白VSV-G质粒及载体质粒组成,包含很大一部分HIV基因组,包括gagpol基因,慢病毒辅助基因vifvprvpunef,以及调节基因tatrev[15]。由于tatrev是病毒复制所必需的基因,而vifvprvpunef基因对病毒在体外生长不是必需的。因此,第二代慢病毒载体去除了辅助基因vifvprvpunef,在不影响载体产量和感染效率的情况下提高了安全性。第三代慢病毒载体删除了U3区的3'LTR,使载体失去HIV-1增强子及启动子序列,以产生自失活慢病毒载体。将gagpolrev基因编码在不同的质粒上,去除了tat基因,通过将病毒基因组分解成单独的质粒进一步提高了安全性[19]

目前慢病毒载体生产制备的主要流程为:目的基因获取→构建质粒测序验证→转染HEK 293T→扩大培养→收获病毒上清液→纯化浓缩。科研级慢病毒载体的生产过程使用普通培养瓶,收获病毒产量较低,仅供科学研究使用,纯化浓缩主要采用超滤柱浓缩法、PEG浓缩法或超速离心法[20]。临床试验以及工业化生产需要大量慢病毒载体,因此会使用大规模制备设备,如采用多层培养系统、用悬浮培养生产慢病毒,纯化过程采用膜分离技术、离子交换色谱、亲和色谱、体积排阻色谱等技术,对洁净室环境要求也更高。

2.3 腺病毒载体

腺病毒属于腺病毒科,无包膜,其基因组为26~45 kb线状双链DNA分子,是直径为90~100 nm的二十面体病毒颗粒[21]。其基因组两端各有一个反向末端重复区,内侧为病毒包装信号。基因组上分布着4个承担调节功能的早期转录元E1、E2、E3和E4,以及一个负责结构蛋白编码的晚期转录元[22]。1953年,人们发现并成功分离腺病毒,经过几十年的发展,通过对其基因组的逐步修改,腺病毒成为一种有前途的基因递送载体。目前,腺病毒载体(adenovirus vector,AdV)基因插入能力从第一代约7 kb提高到了36 kb,可以收获滴度高达1010~1011 pfu/mL的病毒载体[23]

腺病毒载体构建方法方便简单,对分裂期与非分裂期细胞均可以有效转导,转导效率高,病毒载体可长期储存,进入宿主细胞后不整合到宿主细胞基因组,仅瞬间表达,安全性高[24]。因此,腺病毒载体在基因治疗的临床试验方面蓬勃发展。2003年,赛百诺公司自主研发的 “重组人p53腺病毒注射液”(Gendicine)成为世界上第一个获准上市的基于腺病毒载体的基因治疗药物[25-26]。现有的腺病毒载体可分为三代:第一代腺病毒载体去除了E1E3基因,这一类型的病毒需要经过纯化才能安全使用,否则会引发机体产生较强的炎症反应和免疫反应。第二代腺病毒载体去除了E2AE4基因,减弱了免疫反应的发生,提高了载体容量和安全性,但病毒包装难度增加,病毒滴度有所下降。第三代腺病毒载体去除了全部或大部分病毒基因,仅可保留ITR和包装信号序列,使免疫反应进一步减少,载体中引入核基质附着区基因,可使外源基因保持长期表达,增加了载体的稳定性[27]。目前,Ad5型腺病毒载体被广泛应用于基础科学、基因治疗和疫苗开发[28]

腺病毒载体的包装系统可以分为AdMAX和AdEasy两种,主要步骤包括构建穿梭质粒→穿梭质粒与腺病毒骨架同源重组→转染HEK293细胞→扩大培养→收集病毒上清液→纯化病毒载体[11,29]。目前科研级腺病毒载体主要是通过小规模的培养瓶培养,培养面积为十几平方厘米到300 m2之间,临床级及工业化生产则需要中等甚至大规模的细胞培养环境,如细胞工厂、生物反应器贴壁培养或悬浮培养等。收获的腺病毒载体还需要进行纯化,目前采用的纯化方法多是柱层析法,可以去除大颗粒及小分子杂质,并使病毒载体进一步浓缩。

2.4 腺相关病毒载体

腺相关病毒(adeno-associated virus,AAV)属于细小病毒家族,无包膜[30],由三种病毒衣壳蛋白VP1、VP2和VP3组成二十面体对称的非包膜壳,需要依赖于其他病毒如腺病毒、单纯疱疹病毒、牛痘病毒和人乳头瘤病毒等才能进行复制[31]。基因组为长度4~6 kb的单链线状DNA,包含repcapaap三个基因,rep基因编码病毒基因组复制和包装所必需的4种蛋白质rep78、rep68、rep52和rep40,cap表达产生病毒衣壳蛋白,aap基因在与帽基因重叠的替代阅读框中编码组装激活蛋白[32]。AAV最初是在1965年作为猴腺病毒制剂中的污染物被发现的,1984年有研究人员认为其是潜在的基因治疗载体[33]。目前使用的AAV载体是重组腺相关病毒(recombinant adeno-associated virus,rAAV)载体,是在非致病的野生型 AAV 基础上改造而成的基因载体,其中repcapaap基因由转基因表达盒取代,只剩下了两端的ITR[34]

与其他载体系统相比,rAAV载体的包装容量略低,可以承载5 kb以下的基因组,除了包括AAV自身的ITR以外,还要考虑基因表达所需的调控元件。但与其他病毒载体不同,不同血清型的AAV组织感染嗜亲性各不相同,具有一定器官靶向特异性[35]。并且rAAV载体不整合进入宿主基因组,免疫原性低,感染范围广,可以感染分裂期与非分裂期细胞,感染效率高,收获病毒滴度较高。早期的AAV生产系统采取两种质粒转染:一个是包含目的基因的质粒,两侧是ITR;一个是表达repcap基因的质粒,以及提供辅助功能的腺病毒载体,但该方法不能避免腺病毒污染[36]。因此,通过研究,目前AAV生产采用最多的是经典的三质粒共转染法(Helper-free AAV包装系统),即用编码转基因的质粒、含有5型腺病毒(Ad5)辅助基因(即E1a/bE2aE4VA RNA)或其等效基因的辅助质粒,以及编码rAAV Rep和Cap蛋白的另一个质粒共同转染HEK293细胞[37]。目前临床应用及大规模生产中已经培育出可以在生物反应器悬浮液中生长的HEK293细胞,每升产生超过1×1014个载体基因组,生产所得的病毒载体采用密度梯度离心或阴离子交换柱纯化,可以获得大量高纯度、高效率的病毒载体[38]

2.5 非病毒载体

2.5.1 裸DNA

裸DNA是最简单也是最常见的非病毒载体 (nonviral vector,NVV),但其转染效率低、基因表达时间短, 在临床应用上受到较大限制[39]。目前, 裸DNA主要利用如肌内注射、电穿孔、基因枪等物理方法, 将目的基因载入细胞中并进行表达。

2.5.2 脂质体

脂质体是由脂质双分子膜形成的封闭微脂囊[40],具有低毒性、可降解性、易操作及制备等优点。目前,阳离子型脂质体是除裸DNA外应用最为普遍的非病毒基因传递系统[41]

2.5.3 高分子多聚物

多聚物载体中,阳离子多聚物目前应用较多[42]。多聚赖氨酸(polylysine,PLL)和聚乙烯亚胺 (polyetherimide,PEI) 是阳离子多聚物的典型代表。但二者在使用中都存在许多问题。例如,PLL缺乏内涵体逃逸机制和内涵体裂解基团,如组氨酸[24]等,导致其在细胞内的传递使用受到限制,需要科学家对其结构加以改造[43]

2.5.4 纳米颗粒

无机纳米颗粒基因载体具有低分散性、可重复合成性、良好的生物亲和性、较低细胞毒性、代谢产物少、无免疫排斥反应、稳定性好等优点。目前己有关于无机硅壳类纳米颗粒的一些研究报道。例如,无机纳米颗粒可用于转染,将质粒导入相应细胞系,并实现其在细胞内的高水平表达[44-45]。此外,金纳米颗粒作为无机纳米材料的一种,具有非细胞毒性、生物相容性、易于修饰改造等优点,非常适合作为核酸递送载体[46]

2.5.5 SB转座子

SB转座子(Sleeping Beauty transposon)发现于鲑鱼基因组中,是一种合成元素,隶属于Tc1/ mariner超家族DNA转座子,该超家族在大约1 000万年前处于鼎盛时期[47]。它被Ivics等从睡眠中唤醒。1997年[48]通过消除失活突变,构建了8种不同鱼类的共有序列。重建后,SB转座子还被发现能介导包括小鼠和人类在内的多种脊椎动物的转座[49],因此,它逐渐成为基因组工程的实用工具,其应用范围从功能基因组学[50]到基因组学和细胞疗法[51]。目前其作为一种基因转导技术,在体内外实验中均得到应用。

2.5.6 PB转座子

PB转座子(PiggyBac transposon),最初是由病毒遗传学家Fraser等[52]发现于对甘蓝尺蠖蛾(cabbage loopermoth Trichophsiani)的研究中,属于真核生物的第二类DNA转座子,是一个自主转座子,可通过“剪切和粘贴”机制在载体和染色体之间有效转座。在转座过程中,PB转座酶可识别位于转座子载体两端的转座子特异性反向末端重复 (ITR) 序列,能够有效地将内容物从其原始位置移动,并将其有效整合到TTAA染色体位点中[53]。与SB转座子相比,PB转座子有更高的转导转座效率[54]。除此之外,PB转座系统操作简单,具有较高的安全性且成本低,目前PB转座子系统成功应用于T细胞修饰[55],是应用较广且具有临床研究前途的非病毒载体系统。

除上述载体外,非病毒基因载体还有多肽、蛋白质、壳聚糖等。随着材料化学和医学研究的快速发展,非病毒载体种类将会越来越丰富,功能越来越多样。

3 载体的工业化生产

细胞免疫治疗载体技术种类丰富,根据不同研究需求,科学家们可以选择不同种类的载体,但最终的目标都是能够推进临床应用,《人用基因治疗制品总论》《细胞治疗产品研究与评价技术指导原则(试行)》《免疫细胞治疗产品学研究与评价技术指导原则(试行)》等文件均对载体的生产和质量控制进行了通用性技术要求[56-58]。虽然病毒载体和非病毒载体在科学研究上百花齐放,但是在上市阶段,在细胞治疗领域已经上市产品主要依赖于慢病毒载体、逆转录病毒载体两种底层技术,工业化病毒包装过程基本包括以下三步:(1)将目的基因构建进入骨架质粒;(2)将包装质粒转染进入包装细胞;(3)收集上清液并纯化病毒载体。根据《中国药典》要求,从提取质粒的环节开始所有过程均需符合GMP的基本原则和相关要求,并且不能仅从成品进行检测,从质粒、细胞库、试剂及添加物、过程控制、中间制品、特性分析和工艺验证等全程、全方位进行质量控制[59]

Yescarta和Kymriah两款产品是最早上市的CD19靶向CAR-T产品,一个采用慢病毒载体、一个采用逆转录病毒载体,6年建立了市场化管线,两者均具有相对成熟的工业化生产线。图2总结了两款产品近5年的全球销售额,2022年Yescarta(应用逆转录病毒载体)比Kymriah(应用慢病毒载体)的销售额高出2倍。2021年是中国细胞治疗的元年,奕凯达和倍诺达作为国内上市的第一款和第二款靶向CD19的CAR-T产品先后问世,也采用了不同的生产工艺。图3总结了2022-2023年这两款产品在国内的销售情况,奕凯达(应用逆转录病毒载体)比倍诺达(应用慢病毒载体)的销售额高出近3倍,可见逆转录病毒载体在工业化中的优势遥遥领先。无论是在国内市场还是在全球市场,应用逆转录病毒载体工艺的产品售价更低,在销售数量和销售额中都较慢病毒载体工艺的产品高,逆转录病毒载体较低工业化成本和高产量使其市场占有率较高,从而获得高收益。

图2

图2   Yescarta和Kymriah近5年全球销售额

Fig.2   Yescarta and Kymriah global sales over the last five years


图3

图3   2022-2023年中国奕凯达和倍诺达销售情况

Fig.3   Sales of Ekeda and Benevoda in China, 2022-2023


慢病毒载体的包装流程较为简单,但由于慢病毒包装一般设计为3个质粒共同转染,且为瞬时包装方式,包装质粒需求量大。包装质粒需求量大这种方式导致批次之间的异度较大,一定程度上限制了生产规模。在工业化生产阶段,逆转录病毒载体筛选稳定转染的细胞株工艺较复杂,但其优势在于能够形成稳定产毒的细胞株,这也就意味着前期包装质粒需求量小,并且病毒载体产量稳定,批次之间异度较小,并且可以通过冻存细胞株以实现后期源源不断收获病毒载体。除去感染细胞的操作过程不一致,扩增感染细胞环节是两种病毒载体包装中一致的环节,并且由于包装细胞均为贴壁细胞,相对于悬浮细胞培养模式,贴壁细胞的空间利用度太低,目前科学家们从新工艺开发入手,开发了悬浮培养体系等解决方案[60]图4总结了两个载体工业化包装流程,表3对两种载体进行对比。

图4

图4   慢病毒载体和逆转录病毒载体工业化包装流程

Fig.4   Flow of industrial packaging of lentiviral and retroviral vectors


表3   慢病毒载体和逆转录病毒载体的对比

Table 3  Comparison of lentiviral and retroviral vectors

病毒载体慢病毒载体逆转录病毒载体
病毒颗粒大小80~120 nm80~100 nm
基因组RNARNA
包装所需质粒数量1个表达质粒和2~3个包装质粒1个表达质粒
包装所需质粒规模毫克级微克级
包装方式表达质粒和包装质粒共转染293T细胞以获得含有慢病毒载体颗粒的上清液表达质粒转染含有包装蛋白质的瞬转包装细胞以获得含有病毒的上清液,感染能够稳转的包装细胞,最终获得含有逆转录病毒载体颗粒的上清液
病毒纯化必需(核酸、蛋白质)可选(蛋白质)
病毒浓缩必需可选
病毒滴度浓缩后可达108~109 TU/mL106~107 TU/mL,浓缩后可达108~109 TU/mL
免疫原性低-中低-中
整合方式随机并稳定整合随机并稳定整合
一般整合位点基因内基因间
产量低(30~50人份/批)高(可达1 000人份/批)
成本较高较低
感染细胞状态分裂期和非分裂期分裂期
表达维持时间稳定表达稳定表达
表达丰度高水平高水平
开始表达时间较慢,2~4天较快,1~2天

新窗口打开| 下载CSV


如今,细胞产品种类的开发日益丰富,除已上市在血液瘤治疗中展示出极大优势的CAR-T细胞产品外,还有很多针对实体瘤治疗的CAR-NK、CAR-M等细胞产品,针对治疗实体瘤的细胞产品在剂量上也有大幅度提升,但要考虑其工业化成本优势。除成本外,细胞的转导效率是应用于临床的主要考核指标,慢病毒载体常见包膜VSV-G,在造血干细胞(HSC)和自然杀伤(NK)细胞的改造中VSV-G假型慢病毒载体并不能获得令人满意的转导效率,而作为VSV-G同源细胞受体的低密度脂蛋白受体(LDL-R),在被激活的T细胞表面高水平表达,因此VSV-G假型慢病毒载体(VSV-G-LVs)转导能力在T细胞上较强,而转导NK细胞其效率极低(一般小于5%)。相反,逆转录病毒载体的包膜在NK细胞的转导上更具优势[61]

4 展望

2010年,第一个经FDA批准上市的自体细胞免疫疗法Provenge诞生,它通过将患者的免疫细胞与PA2024抗原共培养,以刺激和引导细胞在回输至患者体内后对抗前列腺癌。但在获得监管部门批准后,Provenge面临与其制造和管理相关的挑战,高成本和短保质期阻碍了其广泛的临床应用。在经过短短几十年的研发过程,尽管细胞免疫疗法制备过程越发复杂易变,但目前在临床大放异彩,这与一代代载体技术的发展密切相关,从可能携带致病性基因片段,到失活载体构建、提高安全性,现在已经有了可以定向在合适位点插入治疗基因的研究[62-63],从各方面都有了长足的进步。从Yescarta产品2022年全球销售额达11.6亿美金的结果来看,似乎10年前禁锢Provenge产品发展的问题已经解决,但是细胞免疫疗法载体生产在工艺优化、生产规模加大和质量控制方面还有很多挑战。随着技术的不断发展和人们对疾病认识的进一步加深,基因递送载体作为可编程活体药物的途径将成为对抗疾病的有力武器。

参考文献

Sengupta R, Honey K.

AACR cancer progress report 2019:transforming lives through innovative cancer science

Clinical Cancer Research, 2019, 25(18): 5431.

[本文引用: 1]

Bashor C J, Hilton I B, Bandukwala H, et al.

Engineering the next generation of cell-based therapeutics

Nature Reviews Drug Discovery, 2022, 21: 655-675.

DOI      PMID      [本文引用: 1]

Cell-based therapeutics are an emerging modality with the potential to treat many currently intractable diseases through uniquely powerful modes of action. Despite notable recent clinical and commercial successes, cell-based therapies continue to face numerous challenges that limit their widespread translation and commercialization, including identification of the appropriate cell source, generation of a sufficiently viable, potent and safe product that meets patient- and disease-specific needs, and the development of scalable manufacturing processes. These hurdles are being addressed through the use of cutting-edge basic research driven by next-generation engineering approaches, including genome and epigenome editing, synthetic biology and the use of biomaterials.© 2022. Springer Nature Limited.

Finkelstein D M, Miller R G.

Cell surface recognition determinants involved in triggering the lymphokine activated killer cell phenomenon: enhanced killing of modified “anti-self” targets by varying LAK culture conditions

The Journal of Otolaryngology, 1990, 19(5): 294-298.

[本文引用: 1]

Doudna J A.

The promise and challenge of therapeutic genome editing

Nature, 2020, 578: 229-236.

DOI      [本文引用: 1]

Vile R G, Tuszynski A, Castleden S.

Retroviral vectors. From laboratory tools to molecular medicine

Molecular Biotechnology, 1996, 5(2): 139-158.

PMID      [本文引用: 1]

The majority of clinical trials for gene therapy currently employ retroviral-mediated gene delivery. This is because the life cycle of the retrovirus is well understood and can be effectively manipulated to generate vectors that can be efficiently and safely packaged. Here, we review the molecular technology behind the generation of recombinant retroviral vectors. We also highlight the problems associated with the use of these viruses as gene therapy vehicles and discuss future developments that will be necessary to maintain retroviral vectors at the forefront of gene transfer technology.

Anton G.

Retroviral vectors

Revue Roumaine De Virologie, 1994, 45(3-4): 193-202.

PMID      [本文引用: 1]

The most widespread use of retroviral vectors is a general purpose expression vectors for experimental researches, in eukaryotic cell culture. Some retroviral vectors have several more specialized applications in genetics and possibly in medicine. The principles of the design and construction of retroviral vectors are presented, as well as their applications and limits.

Vargiu L, Rodriguez-Tomé P, Sperber G O, et al.

Classification and characterization of human endogenous retroviruses; mosaic forms are common

Retrovirology, 2016, 13(1): 7.

[本文引用: 1]

Pornillos O, Ganser-Pornillos B K.

Maturation of retroviruses

Current Opinion in Virology, 2019, 36: 47-55.

DOI      PMID      [本文引用: 1]

During retrovirus maturation, cleavage of the precursor structural Gag polyprotein by the viral protease induces architectural rearrangement of the virus particle from an immature into a mature, infectious form. The structural rearrangement encapsidates the viral RNA genome in a fullerene capsid, producing a diffusible viral core that can initiate infection upon entry into the cytoplasm of a host cell. Maturation is an important therapeutic window against HIV-1. In this review, we highlight recent breakthroughs in understanding of the structures of retroviral immature and mature capsid lattices that define the boundary conditions of maturation and provide novel insights on capsid transformation. We also discuss emerging insights on encapsidation of the viral genome in the mature capsid, as well as remaining questions for further study.Copyright © 2019 Elsevier B.V. All rights reserved.

徐钤, 贺新军.

用于基因转移的逆转录病毒及其载体

生物技术通讯, 1994, 5(4): 169-171.

[本文引用: 1]

Xu Q, He X J.

Retrovirus for gene transfer and its vector

Letters in Biotechnology, 1994, 5(4): 169-171.

DOI      URL     [本文引用: 1]

Cornetta K, Pollok K E, Miller A D.

Retroviral vectors for gene transfer

CSH Protocols, 2008, 2008: pdb.top29.

[本文引用: 1]

Cornetta K, Pollok K E, Miller A D.

Retroviral vector production by transient transfection

CSH Protocols, 2008, 2008: pdb.prot4881.

[本文引用: 2]

Cornetta K, Pollok K E, Miller A D.

Generation of stable vector-producing cells for retroviral vectors

CSH Protocols, 2008, 2008: pdb.prot4882.

[本文引用: 1]

Dubensky T W Jr, Sauter S L.

Generation of retroviral packaging and producer cell lines for large-scale vector production with improved safety and titer

Methods in Molecular Medicine, 2003, 76: 309-330.

PMID      [本文引用: 1]

Herbst F, Ball C R, Zavidij O, et al.

10-year stability of clinical-grade serum-free γ-retroviral vector-containing medium

Gene Therapy, 2011, 18(2): 210-212.

DOI      PMID      [本文引用: 1]

More than 10 years ago, we developed an efficient protocol for serum-free retroviral transduction of human hematopoietic stem cells derived from mobilized peripheral blood. After upscaling of the methodology, serum-free retroviral gibbon-ape leukemia virus (GALV) pseudotype PG13/LN vector supernatant produced under strict good manufacturing practice (GMP) conditions was used in the first clinical gene-marking trial in Germany. In this study, we analyzed the titer and transduction efficiency of this serum-free clinical-grade retroviral supernatant 10 years after production to evaluate the long-term stability. Long-term storage and transport on dry ice resulted in modestly decreased titers and levels of transduction efficiency in CD34+ cells ranging from 38.4 to 49.1%. We conclude that the stability of retroviral vectors in serum-free medium allows extended storage and distribution of approved clinical-grade retroviral vector stocks to distant sites in multicenter clinical trials.

Escors D, Breckpot K.

Lentiviral vectors in gene therapy: their current status and future potential

Archivum Immunologiae et Therapiae Experimentalis, 2010, 58(2): 107-119.

DOI      PMID      [本文引用: 2]

The concept of gene therapy originated in the mid twentieth century and was perceived as a revolutionary technology with the promise to cure almost any disease of which the molecular basis was understood. Since then, several gene vectors have been developed and the feasibility of gene therapy has been shown in many animal models of human disease. However, clinical efficacy could not be demonstrated until the beginning of the new century in a small-scale clinical trial curing an otherwise fatal immunodeficiency disorder in children. This first success, achieved after retroviral therapy, was later overshadowed by the occurrence of vector-related leukemia in a significant number of the treated children, demonstrating that the future success of gene therapy depends on our understanding of vector biology. This has led to the development of later-generation vectors with improved efficiency, specificity, and safety. Amongst these are HIV-1 lentivirus-based vectors (lentivectors), which are being increasingly used in basic and applied research. Human gene therapy clinical trials are currently underway using lentivectors in a wide range of human diseases. The intention of this review is to describe the main scientific steps leading to the engineering of HIV-1 lentiviral vectors and place them in the context of current human gene therapy.

赵晓煜, 徐祺玲, 赵晓东, .

基因治疗慢病毒载体的转导增强策略

中国生物工程杂志, 2021, 41(8): 52-58.

[本文引用: 1]

Zhao X Y, Xu Q L, Zhao X D, et al.

Enhancing lentiviral vector transduction efficiency for facilitating gene therapy

China Biotechnology, 2021, 41(8): 52-58.

[本文引用: 1]

Wang X Y, Ma C C, Rodríguez Labrada R, et al.

Recent advances in lentiviral vectors for gene therapy

Science China Life Sciences, 2021, 64(11): 1842-1857.

DOI      [本文引用: 1]

Perry C, Rayat A C M E.

Lentiviral vector bioprocessing

Viruses, 2021, 13(2): 268.

[本文引用: 1]

Milone M C, O’Doherty U.

Clinical use of lentiviral vectors

Leukemia, 2018, 32: 1529-1541.

DOI      PMID      [本文引用: 1]

Viral vectors provide an efficient means for modification of eukaryotic cells, and their use is now commonplace in academic laboratories and industry for both research and clinical gene therapy applications. Lentiviral vectors, derived from the human immunodeficiency virus, have been extensively investigated and optimized over the past two decades. Third-generation, self-inactivating lentiviral vectors have recently been used in multiple clinical trials to introduce genes into hematopoietic stem cells to correct primary immunodeficiencies and hemoglobinopathies. These vectors have also been used to introduce genes into mature T cells to generate immunity to cancer through the delivery of chimeric antigen receptors (CARs) or cloned T-cell receptors. CAR T-cell therapies engineered using lentiviral vectors have demonstrated noteworthy clinical success in patients with B-cell malignancies leading to regulatory approval of the first genetically engineered cellular therapy using lentiviral vectors. In this review, we discuss several aspects of lentiviral vectors that will be of interest to clinicians, including an overview of lentiviral vector development, the current uses of viral vectors as therapy for primary immunodeficiencies and cancers, large-scale manufacturing of lentiviral vectors, and long-term follow-up of patients treated with gene therapy products.

Tiscornia G, Singer O, Verma I M.

Production and purification of lentiviral vectors

Nature Protocols, 2006, 1: 241-245.

DOI      PMID      [本文引用: 1]

Lentiviral vectors offer unique versatility and robustness as vehicles for gene delivery. They can transduce a wide range of cell types and integrate into the host genome in both dividing and post-mitotic cells, resulting in long-term expression of the transgene both in vitro and in vivo. This protocol describes how lentiviral vectors can be produced, purified and titrated. High titer suspensions can be routinely prepared with relative ease: a low-titer (10(6) viral particles/ml) unpurified preparation can be obtained 3 d after transfecting cells with lentiviral vector and packaging plasmids; a high-titer (10(9) viral particles/ml) purified preparation requires 2 more days.

Watanabe M, Nishikawaji Y, Kawakami H, et al.

Adenovirus biology, recombinant adenovirus, and adenovirus usage in gene therapy

Viruses, 2021, 13(12): 2502.

[本文引用: 1]

Kulanayake S, Tikoo S K.

Adenovirus core proteins: structure and function

Viruses, 2021, 13(3): 388.

[本文引用: 1]

Syyam A, Nawaz A, Ijaz A, et al.

Adenovirus vector system: construction, history and therapeutic applications

BioTechniques, 2022, 73(6): 297-305.

DOI      PMID      [本文引用: 1]

Since the isolation of adenovirus (AdV) in 1953, AdVs have been used as vectors for various therapeutic purposes, such as gene therapy in cancers and other malignancies, vaccine development and delivery of CRISPR-Cas9 machinery. Over the years, several AdV vector modifications have been introduced, including fiber switching, incorporation of ligands in the viral capsid and hexon modification of the fiber, to improve the efficiency of AdV as a vector. CRISPR-Cas9 has recently been used for these modifications and is also used in other adeno-associated viruses. These modifications further allow the production of AdV libraries that display random peptides for the production of cancer-targeting AdV vectors. This review focuses on the common methods of AdV construction, changes in AdV tropism for the improvement of therapeutic efficiency and the role of AdV vectors in gene therapy, vaccine development and CRISPR-Cas9 delivery.

Gebre M S, Brito L A, Tostanoski L H, et al.

Novel approaches for vaccine development

Cell, 2021, 184(6): 1589-1603.

DOI      PMID      [本文引用: 2]

Vaccines are critical tools for maintaining global health. Traditional vaccine technologies have been used across a wide range of bacterial and viral pathogens, yet there are a number of examples where they have not been successful, such as for persistent infections, rapidly evolving pathogens with high sequence variability, complex viral antigens, and emerging pathogens. Novel technologies such as nucleic acid and viral vector vaccines offer the potential to revolutionize vaccine development as they are well-suited to address existing technology limitations. In this review, we discuss the current state of RNA vaccines, recombinant adenovirus vector-based vaccines, and advances from biomaterials and engineering that address these important public health challenges.Copyright © 2021 Elsevier Inc. All rights reserved.

Lusky M.

Good manufacturing practice production of adenoviral vectors for clinical trials

Human Gene Therapy, 2005, 16(3): 281-291.

DOI      URL     [本文引用: 1]

Sun W M, Shi Q L, Zhang H Y, et al.

Advances in the techniques and methodologies of cancer gene therapy

Discovery Medicine, 2019, 27(146): 45-55.

PMID      [本文引用: 1]

Cancer is the second leading cause of mortality worldwide after cardiovascular diseases, predominantly due to the lack of early symptoms and early diagnosis, and high relapse rate after radical surgery and conventional therapies. Therefore, novel approaches such as gene therapy have raised hope to significantly improve the survival rate of patients with cancers. This review aims to provide up-to-date information concerning gene therapy including improved vectors, suicide genes, cancer suppressor genes, anti-tumor angiogenesis, gene silencing, oncolytic virotherapy, and gene-editing technology. Although specific issues still exist before gene therapy can completely cure cancers, here we highlight the potential of gene therapy in cancer treatment and expect to see continuous breakthroughs in techniques and methodologies of gene therapy.

Sallard E, Zhang W L, Aydin M, et al.

The adenovirus vector platform: novel insights into rational vector design and lessons learned from the COVID-19 vaccine

Viruses, 2023, 15(1): 204.

[本文引用: 1]

Guo X J, Sun Y Y, Chen J, et al.

Restriction-assembly: a solution to construct novel adenovirus vector

Viruses, 2022, 14(3): 546.

[本文引用: 1]

Silva A C, Peixoto C, Lucas T, et al.

Adenovirus vector production and purification

Current Gene Therapy, 2010, 10(6): 437-455.

PMID      [本文引用: 1]

Replication deficient adenovirus vectors are frequently used tools for the delivery of transgenes in vitro and in vivo. In addition, several therapeutic products based on adenovirus are under clinical development. This review outlines adenovirus vector production discussing different vector types, available production cell lines and state of the art of production process development and purification.

武志杰, 马文豪, 董哲岳, .

AAV载体介导的蓬佩病模型小鼠体内基因治疗研究

中国生物工程杂志, 2022, 42(7): 24-34.

[本文引用: 1]

Wu Z J, Ma W H, Dong Z Y, et al.

AAV vector mediated gene therapy in pompe model mice

China Biotechnology, 2022, 42(7): 24-34.

[本文引用: 1]

Meyer N L, Chapman M S.

Adeno-associated virus (AAV) cell entry: structural insights

Trends in Microbiology, 2022, 30(5): 432-451.

DOI      URL     [本文引用: 1]

Naso M F, Tomkowicz B, Perry W L, et al.

Adeno-associated virus (AAV) as a vector for gene therapy

BioDrugs, 2017, 31(4): 317-334.

DOI      PMID      [本文引用: 1]

There has been a resurgence in gene therapy efforts that is partly fueled by the identification and understanding of new gene delivery vectors. Adeno-associated virus (AAV) is a non-enveloped virus that can be engineered to deliver DNA to target cells, and has attracted a significant amount of attention in the field, especially in clinical-stage experimental therapeutic strategies. The ability to generate recombinant AAV particles lacking any viral genes and containing DNA sequences of interest for various therapeutic applications has thus far proven to be one of the safest strategies for gene therapies. This review will provide an overview of some important factors to consider in the use of AAV as a vector for gene therapy.

Zengel J, Carette J E.

Structural and cellular biology of adeno-associated virus attachment and entry

Advances in Virus Research, 2020, 106: 39-84.

DOI      PMID      [本文引用: 1]

Adeno-associated virus (AAV) is a nonenveloped, ssDNA virus in the parvovirus family, which has become one of the leading candidate vectors for human gene therapy. AAV has been studied extensively to identify host cellular factors involved in infection, as well as to identify capsid variants that confer clinically favorable transduction profiles ex vivo and in vivo. Recent advances in technology have allowed for direct genetic approaches to be used to more comprehensively characterize host factors required for AAV infection and allowed for identification of a critical multi-serotype receptor, adeno-associated virus receptor (AAVR). In this chapter, we will discuss the interactions of AAV with its glycan and proteinaceous receptors and describe the host and viral components involved in AAV entry, which requires cellular attachment, endocytosis, trafficking to the trans-Golgi network and nuclear import. AAV serves as a paradigm for entry of nonenveloped viruses. Furthermore, we will discuss the potential of utilizing our increased understanding of virus-host interactions during AAV entry to develop better AAV-based therapeutics, with a focus on host factors and capsid interactions involved in in vivo tropism.© 2020 Elsevier Inc. All rights reserved.

Chen Y H, Keiser M S, Davidson B L.

Adeno-associated virus production, purification, and titering

Current Protocols in Mouse Biology, 2018, 8(4): e56.

[本文引用: 1]

Li C W, Samulski R J.

Engineering adeno-associated virus vectors for gene therapy

Nature Reviews Genetics, 2020, 21: 255-272.

DOI      PMID      [本文引用: 1]

Adeno-associated virus (AAV) vector-mediated gene delivery was recently approved for the treatment of inherited blindness and spinal muscular atrophy, and long-term therapeutic effects have been achieved for other rare diseases, including haemophilia and Duchenne muscular dystrophy. However, current research indicates that the genetic modification of AAV vectors may further facilitate the success of AAV gene therapy. Vector engineering can increase AAV transduction efficiency (by optimizing the transgene cassette), vector tropism (using capsid engineering) and the ability of the capsid and transgene to avoid the host immune response (by genetically modifying these components), as well as optimize the large-scale production of AAV.

Large E E, Silveria M A, Zane G M, et al.

Adeno-associated virus (AAV) gene delivery: dissecting molecular interactions upon cell entry

Viruses, 2021, 13(7): 1336.

[本文引用: 1]

Aponte-Ubillus J J, Barajas D, Peltier J, et al.

Molecular design for recombinant adeno-associated virus (rAAV) vector production

Applied Microbiology and Biotechnology, 2018, 102(3): 1045-1054.

DOI      PMID      [本文引用: 1]

Recombinant adeno-associated virus (rAAV) vectors are increasingly popular tools for gene therapy applications. Their non-pathogenic status, low inflammatory potential, availability of viral serotypes with different tissue tropisms, and prospective long-lasting gene expression are important attributes that make rAAVs safe and efficient therapeutic options. Over the last three decades, several groups have engineered recombinant AAV-producing platforms, yielding high titers of transducing vector particles. Current specific productivity yields from different platforms range from 10 to 10 vector genomes (vg) per cell, and there is an ongoing effort to improve vector yields in order to satisfy high product demands required for clinical trials and future commercialization.Crucial aspects of vector production include the molecular design of the rAAV-producing host cell line along with the design of AAV genes, promoters, and regulatory elements. Appropriately, configuring and balancing the expression of these elements not only contributes toward high productivity, it also improves process robustness and product quality. In this mini-review, the rational design of rAAV-producing expression systems is discussed, with special attention to molecular strategies that contribute to high-yielding, biomanufacturing-amenable rAAV production processes. Details on molecular optimization from four rAAV expression systems are covered: adenovirus, herpesvirus, and baculovirus complementation systems, as well as a recently explored yeast expression system.

Wang D, Tai P W L, Gao G P.

Adeno-associated virus vector as a platform for gene therapy delivery

Nature Reviews Drug Discovery, 2019, 18: 358-378.

DOI      PMID      [本文引用: 1]

Adeno-associated virus (AAV) vectors are the leading platform for gene delivery for the treatment of a variety of human diseases. Recent advances in developing clinically desirable AAV capsids, optimizing genome designs and harnessing revolutionary biotechnologies have contributed substantially to the growth of the gene therapy field. Preclinical and clinical successes in AAV-mediated gene replacement, gene silencing and gene editing have helped AAV gain popularity as the ideal therapeutic vector, with two AAV-based therapeutics gaining regulatory approval in Europe or the United States. Continued study of AAV biology and increased understanding of the associated therapeutic challenges and limitations will build the foundation for future clinical success.

Nishikawa M, Takakura Y, Hashida M.

Theoretical considerations involving the pharmacokinetics of plasmid DNA

Advanced Drug Delivery Reviews, 2005, 57(5): 675-688.

PMID      [本文引用: 1]

Success of in vivo gene therapy relies on the development of gene delivery technologies, by which a well-controlled transgene expression is achieved as far as the spatial and temporal profile of the expression is concerned. Because transgene expression only occurs in cells that are transduced with the gene administered, the tissue distribution of genes is an important factor determining the efficacy of in vivo gene transfer. Plasmid DNA is the simplest vector and its administration in naked or complexed form results in significant transgene expression in various organs. The route of administration, the use of cationic vectors and the administration technique greatly affects the tissue distribution of plasmid DNA and the subsequent transgene expression. Therefore, a clear understanding of the tissue distribution of naked and complexed plasmid DNA is a prerequisite for strategies for developing effective in vivo gene transfer methods. Pharmacokinetics translates the tissue distribution properties of plasmid DNA into quantitative parameters, which can be compared with parameters obtained under different conditions, or with physiological parameters such as blood flow rate. Here we discuss the pharmacokinetic evaluation of the tissue distribution characteristics of plasmid DNA, in the free and complexed forms.

李婉迪, 赵振民.

非病毒载体在基因治疗中的研究进展

新乡医学院学报, 2016, 33(8): 731-734.

[本文引用: 1]

Li W D, Zhao Z M.

Research progress of non-viral vectors in gene therapy

Journal of Xinxiang Medical University, 2016, 33(8): 731-734.

[本文引用: 1]

李月, 孙景鑫, 孙丹丹, .

非病毒基因载体脂质-聚阳离子复合物的研究进展

吉林医药学院学报, 2021, 42(2): 132-134.

[本文引用: 1]

Li Y, Sun J X, Sun D D, et al.

Research progress of non-viral gene carrier lipid polycation complexes

Journal of Jilin Medical University, 2021, 42(2): 132-134.

[本文引用: 1]

Sunshine J C, Bishop C J, Green J J.

Advances in polymeric and inorganic vectors for nonviral nucleic acid delivery

Therapeutic Delivery, 2011, 2(4): 493-521.

DOI      PMID      [本文引用: 1]

Nonviral systems for nucleic acid delivery offer a host of potential advantages compared with viruses, including reduced toxicity and immunogenicity, increased ease of production and less stringent vector size limitations, but remain far less efficient than their viral counterparts. In this article we review recent advances in the delivery of nucleic acids using polymeric and inorganic vectors. We discuss the wide range of materials being designed and evaluated for these purposes while considering the physical requirements and barriers to entry that these agents face and reviewing recent novel approaches towards improving delivery with respect to each of these barriers. Furthermore, we provide a brief overview of past and ongoing nonviral gene therapy clinical trials. We conclude with a discussion of multifunctional nucleic acid carriers and future directions.

Uthaman S, Moon M J, Lee D, et al.

Di-sulfide linked polyethylenimine coated gold nanoparticles as a non-viral gene delivery agent in NIH-3T 3 mouse embryonic fibroblast

Journal of Nanoscience and Nanotechnology, 2015, 15(10): 7895-7899.

PMID      [本文引用: 1]

Di-sulfide linked polyethylenimine coated gold nanoparticles (ssPEI-GNPs) of 20 nm size was prepared in order to deliver the genes to target site. DLS and TEM analysis demonstrated that the GNPs have average size of 13 nm in diameter. Upon coating the GNPs with ssPEI in the weight ratio of 1:3, the average hydrodynamic diameter of the ssPEI-GNPs was found to 19±1.14 nm and a zeta potential value 41±1.23 mV was observed. TEM analysis of ssPEI-GNPs demonstrated that the nanoparticles have spherical morphology. Thermogravemetric analysis of the prepared ssPEI-GNPs showed that the estimated composition of the ssPEI coated over the GNPs was approximately 5% (w/w). Gene expression capabilities of the nanoparticles were confirmed by fluorescent microscopy and luciferase assay, which demonstrated the transgene delivery capability of the ssPEI-GNPs. These results demonstrate that ssPEI-GNPs could be used as gene delivery agent.

彭子艾, 李丹丹, 夏澳运, .

磁性纳米颗粒负载质粒DNA的研究

华南农业大学学报, 2020, 41(1): 78-82.

[本文引用: 1]

Peng Z A, Li D D, Xia A Y, et al.

Study on magnetic nanoparticle loading plasmid DNA

Journal of South China Agricultural University, 2020, 41(1): 78-82.

[本文引用: 1]

吴飞龙, 孔庆磊, 蔡松旺, .

CD147单抗介导的基因治疗纳米颗粒的肺癌细胞靶向性研究

中国病理生理杂志, 2016, 32(9): 1562-1567.

[本文引用: 1]

Wu F L, Kong Q L, Cai S W, et al.

CD147 monoclonal antibody-mediated nanoparticles for gene therapy to target lung cancer cells

Chinese Journal of Pathophysiology, 2016, 32(9): 1562-1567.

[本文引用: 1]

徐建昌, 王晞.

非病毒载体作用机制及在心血管疾病基因治疗中的应用研究进展

山东医药, 2021, 61(30): 97-100.

[本文引用: 1]

Xu J C, Wang X.

Research progress on the mechanism of non-viral vector and its application in gene therapy of cardiovascular diseases

Shandong Medical Journal, 2021, 61(30): 97-100.

[本文引用: 1]

Ivics Z, Izsvak Z, Minter A, et al.

Identification of functional domains and evolution of Tc1-like transposable elements

Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(10): 5008-5013.

[本文引用: 1]

Ivics Z, Hackett P B, Plasterk R H, et al.

Molecular reconstruction of Sleeping beauty, a Tc1-like transposon from fish, and its transposition in human cells

Cell, 1997, 91(4): 501-510.

DOI      PMID      [本文引用: 1]

Members of the Tc1/mariner superfamily of transposons isolated from fish appear to be transpositionally inactive due to the accumulation of mutations. Molecular phylogenetic data were used to construct a synthetic transposon, Sleeping Beauty, which could be identical or equivalent to an ancient element that dispersed in fish genomes in part by horizontal transmission between species. A consensus sequence of a transposase gene of the salmonid subfamily of elements was engineered by eliminating the inactivating mutations. Sleeping Beauty transposase binds to the inverted repeats of salmonid transposons in a substrate-specific manner, and it mediates precise cut-and-paste transposition in fish as well as in mouse and human cells. Sleeping Beauty is an active DNA-transposon system from vertebrates for genetic transformation and insertional mutagenesis.

Izsvák Z, Ivics Z, Plasterk R H.

Sleeping Beauty, a wide host-range transposon vector for genetic transformation in vertebrates

Journal of Molecular Biology, 2000, 302(1): 93-102.

DOI      PMID      [本文引用: 1]

Sleeping Beauty (SB), a member of the Tc1/mariner superfamily of transposable elements, is the only active DNA-based transposon system of vertebrate origin that is available for experimental manipulation. We have been using the SB element as a research tool to investigate some of the cis and trans-requirements of element mobilization, and mechanisms that regulate transposition in vertebrate species. In contrast to mariner transposons, which are regulated by overexpression inhibition, the frequency of SB transposition was found to be roughly proportional to the amount of transposase present in cells. Unlike Tc1 and mariner elements, SB contains two binding sites within each of its terminal inverted repeats, and we found that the presence of both of these sites is a strict requirement for mobilization. In addition to the size of the transposon itself, the length as well as sequence of the DNA outside the transposon have significant effects on transposition. As a general rule, the closer the transposon ends are, the more efficient transposition is from a donor molecule. We have found that SB can transform a wide range of vertebrate cells from fish to human. However, the efficiency and precision of transposition varied significantly among cell lines, suggesting potential involvement of host factors in SB transposition. A positive-negative selection assay was devised to enrich populations of cells harboring inserted transposons in their chromosomes. Using this assay, of the order of 10,000 independent transposon insertions can be generated in human cells in a single transfection experiment. Sleeping Beauty can be a powerful alternative to other vectors that are currently used for the production of transgenic animals and for human gene therapy.Copyright 2000 Academic Press.

Kawakami K, Largaespada D A, Ivics Z.

Transposons As tools for functional genomics in vertebrate models

Trends in Genetics, 2017, 33(11): 784-801.

DOI      PMID      [本文引用: 1]

Genetic tools and mutagenesis strategies based on transposable elements are currently under development with a vision to link primary DNA sequence information to gene functions in vertebrate models. By virtue of their inherent capacity to insert into DNA, transposons can be developed into powerful tools for chromosomal manipulations. Transposon-based forward mutagenesis screens have numerous advantages including high throughput, easy identification of mutated alleles, and providing insight into genetic networks and pathways based on phenotypes. For example, the Sleeping Beauty transposon has become highly instrumental to induce tumors in experimental animals in a tissue-specific manner with the aim of uncovering the genetic basis of diverse cancers. Here, we describe a battery of mutagenic cassettes that can be applied in conjunction with transposon vectors to mutagenize genes, and highlight versatile experimental strategies for the generation of engineered chromosomes for loss-of-function as well as gain-of-function mutagenesis for functional gene annotation in vertebrate models, including zebrafish, mice, and rats.Copyright © 2017 Elsevier Ltd. All rights reserved.

Amberger M, Ivics Z.

Latest advances for the sleeping beauty transposon system: 23 years of insomnia but prettier than ever: refinement and recent innovations of the sleeping beauty transposon system enabling novel, nonviral genetic engineering applications

BioEssays, 2020, 42(11): e2000136.

[本文引用: 1]

Fraser M J, Smith G E, Summers M D.

Acquisition of host cell DNA sequences by baculoviruses: relationship between host DNA insertions and FP mutants of Autographa californica and Galleria mellonella nuclear polyhedrosis viruses

Journal of Virology, 1983, 47(2): 287-300.

DOI      PMID      [本文引用: 1]

Mutants of Autographa californica and Galleria mellonella nuclear polyhedrosis viruses, which produce an altered plaque phenotype as a result of reduced numbers of viral occlusions in infected cells, were isolated after passage in Trichoplusia ni (TN-368) cells. These mutants, termed FP (few-polyhedra) mutants, had acquired cell DNA sequences ranging from 0.8 to 2.8 kilobase pairs in size. The insertions of cell DNA occurred in a specific region between 35.0 and 37.7 map units of the A. californica viral genome. A cloned viral fragment containing one of the host DNA inserts was homologous to host DNA inserts in two other mutant viruses and to dispersed, repetitious sequences in T. ni cell DNA. Most of the homology between the cloned insert and cell DNA was contained within a 1,280-base-pair AluI fragment. Marker rescue studies and analysis of infected-cell-specific proteins suggested that the insertion of cell DNA into the viral genomes resulted in the FP plaque phenotype, possibly through the inactivation of a 25,000-molecular-weight protein.

Zhao S, Jiang E Z, Chen S S, et al.

PiggyBac transposon vectors: the tools of the human gene encoding

Translational Lung Cancer Research, 2016, 5(1): 120-125.

DOI      PMID      [本文引用: 1]

A transposon is a DNA segment, which is able to change its relative position within the entire genome of a cell. The piggyBac (PB) transposon is a movable genetic element that efficiently transposes between vectors and chromosomes through a "cut-and-paste" mechanism. During transposition, the PB transposase recognizes transposon-specific inverted terminal repeats (ITRs) sequences located on both ends of the transposon vector and eight efficiently moves the contents from its original positions and efficiently integrates them into TTAA chromosomal sites. PB has drawn much attention because of its transposition efficiency, safety and stability. Due to its priorities, PB can be used as a new genetic vehicle, a new tool for oncogene screening and a new method for gene therapy. PB has created a new outlook for human gene encoding.

岳冉, 刘子洋, 郑岩, .

纳米载体介导的PiggyBac转座子制备CAR-NK细胞

中国肿瘤生物治疗杂志, 2020, 27(2): 109-114.

[本文引用: 1]

Yue R, Liu Z Y, Zheng Y, et al.

Nanocarrier-mediated PiggyBac transposon system for preparation of CAR-NK cells

Chinese Journal of Cancer Biotherapy, 2020, 27(2): 109-114.

[本文引用: 1]

Dolnikov A, Shen S, Klamer G, et al.

Antileukemic potency of CD19-specific T cells against chemoresistant pediatric acute lymphoblastic leukemia

Experimental Hematology, 2015, 43(12): 1001-1014.e5.

DOI      PMID      [本文引用: 1]

Adoptive therapy with chimeric antigen receptor (CAR) T cells (CART cells) has exhibited great promise in clinical trials, with efficient response correlated with CART-cell expansion and persistence. Despite extensive clinical use, the mechanisms regulating CART-cell expansion and persistence have not been completely elucidated. We have examined the antileukemia potency of CART cells targeting CD19 antigen using second-generation CAR containing a CD28 co-stimulatory domain cloned into piggyBac-transposon vector and patient-derived chemoresistant pediatric acute lymphoblastic leukemia samples. In the presence of large numbers of target cells characteristic of patients with high leukemia burden, excessive proliferation of CART cells leads to differentiation into short-lived effector cells. Transient leukemia growth delay was induced by CART-cell infusion in mice xenografted with rapidly growing CD19+ acute lymphoblastic leukemia cells and was followed by rapid CART-cell extinction. Conditioning with the hypomethylating agent 5-aza-2'-deoxycytidine-activating caspase 3 and promotion of apoptosis in leukemia cells maximized the effect of CART cells and improved CART-cell persistence. These data suggest that the clinical use of 5-aza-2'-deoxycytidine before CART cells could be considered. Coculture of leukemia cells with bone marrow stroma cells reduced target cell loss, suggesting that leukemia cell mobilization into circulation may help to remove the protective effect of bone marrow stroma and increase the efficacy of CART-cell therapy.Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

国家药典委员会. 中华人民共和国药典-三部:2020年版. 北京: 中国医药科技出版社, 2020.

[本文引用: 1]

Chinese Pharmacopoeia Commission. People’s Republic of China (PRC) pharmacopoeia-part III:2020 edition. Beijing: China Medical Science Press, 2020.

[本文引用: 1]

国家药品监督管理局. 总局关于发布细胞治疗产品研究与评价技术指导原则的通告(2017年第216号). [2023-08-01]. https://www.nmpa.gov.cn/ylqx/ylqxggtg/ylqxzhdyz/20171222145101557.html.

URL     [本文引用: 1]

National Medical Products Administration. Notice of the general administration of the People’s Republic of China on issuing the technical guidelines for the research and evaluation of cell therapy products (2017 No. 216). [2023-08-01]. https://www.nmpa.gov.cn/ylqx/ylqxggtg/ylqxzhdyz/20171222145101557.html.

URL     [本文引用: 1]

国家药品监督管理局药品审评中心. 国家药监局药审中心关于发布《免疫细胞治疗产品药学研究与评价技术指导原则(试行)》的通告(2022年第30号). [2023-08-01]. https://www.cde.org.cn/main/news/viewInfoCommon/0584963a84e01bb4d83022f559d22144 Center For Drug Evaluation, NMPA. Circular of the drug approval center of the State Food and Drug Administration on Issuing the guiding principles for pharmaceutical research and evaluation of immune cell therapy products (Trial) (No. 30, 2022). [2023-08-01].

URL     [本文引用: 1]

Center For Drug Evaluation, NMPA. Circular of the drug approval center of the State Food and Drug Administration on Issuing the guiding principles for pharmaceutical research and evaluation of immune cell therapy products (Trial) (No. 30, 2022). [2023-08-01]. https://www.cde.org.cn/main/news/viewInfoCommon/0584963a84e01bb4d83022f559d22144

URL     [本文引用: 1]

国家药典委员会. 中华人民共和国药典-一部:2020年版. 北京: 中国医药科技出版社, 2020.

[本文引用: 1]

Chinese Pharmacopoeia Commission. People’s republic of China (PRC) pharmacopoeia-part I:2020 edition. Beijing: China Medical Science Press, 2020.

[本文引用: 1]

Holohan D R, Lee J C, Bluestone J A.

Shifting the evolving CAR T cell platform into higher gear

Cancer Cell, 2015, 28(4): 401-402.

DOI      PMID      [本文引用: 1]

In this issue of Cancer Cell, Zhao and colleagues test various chimeric antigen receptor (CAR) T cells to show that CD28-CD3ζ CAR T cells that constitutively express 4-1BBL promote T cell expansion and tumor eradication while reducing exhaustion. The results have important implications for the development of effective CAR T cell therapies in cancer patients.Copyright © 2015 Elsevier Inc. All rights reserved.

Bari R, Granzin M, Tsang K S, et al.

A distinct subset of highly proliferative and lentiviral vector (LV)-transducible NK cells define a readily engineered subset for adoptive cellular therapy

Frontiers in Immunology, 2019, 10: 2001.

DOI      PMID      [本文引用: 1]

Genetic engineering is an important tool for redirecting the function of various types of immune cells and their use for therapeutic purpose. Although NK cells have many beneficial therapeutic features, genetic engineering of immune cells for targeted therapy focuses mostly on T cells. One of the major obstacles for NK cell immunotherapy is the lack of an efficient method for gene transfer. Lentiviral vectors have been proven to be a safe tool for genetic engineering, however lentiviral transduction is inefficient for NK cells. We show in this study that lentiviral vectors pseudotyped with a modified baboon envelope glycoprotein can transduce NK cells 20-fold or higher in comparison to VSV-G pseudotyped lentiviral vector. When we investigated the mechanism of transduction, we found that activated NK cells expressed baboon envelope receptor ASCT-2. Further analysis revealed that only a subset of NK cells could be expanded and transduced with an expression profile of NK56, CD16, TRAIL, and CX3CR1. Using CD19-CAR, we could show that CD19 redirected NK cells efficiently and specifically kill cell lines expressing CD19. Taken together, the results from this study will be important for future genetic modification and for redirecting of NK cell function for therapeutic purpose.

Chavez M, Rane D A, Chen X Y, et al.

Stable expression of large transgenes via the knock-in of an integrase-deficient lentivirus

Nature Biomedical Engineering, 2023, 7: 661-671.

DOI      PMID      [本文引用: 1]

The targeted insertion and stable expression of a large genetic payload in primary human cells demands methods that are robust, efficient and easy to implement. Large payload insertion via retroviruses is typically semi-random and hindered by transgene silencing. Leveraging homology-directed repair to place payloads under the control of endogenous essential genes can overcome silencing but often results in low knock-in efficiencies and cytotoxicity. Here we report a method for the knock-in and stable expression of a large payload and for the simultaneous knock-in of two genes at two endogenous loci. The method, which we named CLIP (for 'CRISPR for long-fragment integration via pseudovirus'), leverages an integrase-deficient lentivirus encoding a payload flanked by homology arms and 'cut sites' to insert the payload upstream and in-frame of an endogenous essential gene, followed by the delivery of a CRISPR-associated ribonucleoprotein complex via electroporation. We show that CLIP enables the efficient insertion and stable expression of large payloads and of two difficult-to-express viral antigens in primary T cells at low cytotoxicity. CLIP offers a scalable and efficient method for manufacturing engineered primary cells.© 2023. The Author(s), under exclusive licence to Springer Nature Limited.

Zhang J Q, Hu Y X, Yang J X, et al.

Non-viral, specifically targeted CAR-T cells achieve high safety and efficacy in B-NHL

Nature, 2022, 609: 369-374.

DOI      [本文引用: 1]

Recently, chimeric antigen receptor (CAR)-T cell therapy has shown great promise in treating haematological malignancies1–7. However, CAR-T cell therapy currently has several limitations8–12. Here we successfully developed a two-in-one approach to generate non-viral, gene-specific targeted CAR-T cells through CRISPR–Cas9. Using the optimized protocol, we demonstrated feasibility in a preclinical study by inserting an anti-CD19 CAR cassette into the AAVS1 safe-harbour locus. Furthermore, an innovative type of anti-CD19 CAR-T cell with PD1 integration was developed and showed superior ability to eradicate tumour cells in xenograft models. In adoptive therapy for relapsed/refractory aggressive B cell non-Hodgkin lymphoma (ClinicalTrials.gov, NCT04213469), we observed a high rate (87.5%) of complete remission and durable responses without serious adverse events in eight patients. Notably, these enhanced CAR-T cells were effective even at a low infusion dose and with a low percentage of CAR+ cells. Single-cell analysis showed that the electroporation method resulted in a high percentage of memory T cells in infusion products, and PD1 interference enhanced anti-tumour immune functions, further validating the advantages of non-viral, PD1-integrated CAR-T cells. Collectively, our results demonstrate the high safety and efficacy of non-viral, gene-specific integrated CAR-T cells, thus providing an innovative technology for CAR-T cell therapy.

/