Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2011, Vol. 31 Issue (01): 86-95    DOI:
    
Progress in Nucleic Acid Detection Techniques for Genetically Modified Organisms
DENG Han-chao1, YIN Chang-cheng2, LIU Guo-zhen2,3, LIN Jian-rong1, DENG Ping-jian1,4
1. College of Animal Science, South China Agricultural University, Guangzhou 510642, China;
2. Beijing Protein Innovation, Beijing 100029, China;
3. College of Life Sciences, Agricultural University of Hebei, Baoding 071000, China;
4. Shenzhen Center for Disease Control and Prevention, Shenzhen 518020, China
Download: HTML   PDF(517KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The progress of Genetically Modified Organisms (GMOs) detection techniques has been reviewed, and their characteristics were compared, including the sequence characteristics of GMOs, qualitative and quantitative detection techniques, their principles, characteristics, application and recent progress of the PCR-based detection methods, the isothermal nucleic acid amplification techniques , microarray-based technology, high-throughput sequencing and other new nucleic acid amplification techniques.



Key wordsGenetically Modified Organisms (GMOs)      PCR      Isothermal nucleic acid amplification      Microarray      Biosensor     
Received: 03 September 2010      Published: 25 January 2011
ZTFLH:  Q789  
Cite this article:

DENG Han-chao, YIN Chang-cheng, LIU Guo-zhen, LIN Jian-rong, DENG Ping-jian. Progress in Nucleic Acid Detection Techniques for Genetically Modified Organisms. China Biotechnology, 2011, 31(01): 86-95.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2011/V31/I01/86


[1] James C. 2009年全球生物技术/转基因作物商业化发展态势.中国生物工程杂志, 2010, 30(2): 1-22. James C. China Biotechnology, 2010, 30(2): 1-22.

[2] Zhang M, Gao X, Yu Y, et al. Detection of roundup ready soy in highly processed products by triplex nested PCR. Food Control, 2007, 18(10): 1277-1281.

[3] Salvi S, D’orso F, Morelli G. Detection and quantification of genetically modified organisms using very short, locked nucleic acid TaqMan probes. J Agric Food Chem, 2008, 56(12): 4320-4327.

[4] Liu M, Luo Y, Tao R, et al. Sensitive and rapid detection of genetic modified soybean (Roundup Ready) by loop-mediated isothermal amplification. Biosci Biotechnol Biochem, 2009, 73(11): 2365-2369.

[5] Guan X, Guo J, Shen P, et al. Visual and Rapid Detection of Two Genetically Modified Soybean Events Using Loop-mediated Isothermal Amplification Method. Food Analytical Methods, 2010, 1936-9751: 1-8.

[6] Margarit E, Reggiardo M, Vallejos R, et al. Detection of BT transgenic maize in foodstuffs. Food Research International, 2006, 39: 250-255.

[7] 敬凌霞, 蔡雪飞, 慕生枝, 等. 抗CP4-EPSPS单克隆抗体的制备和生物学特性的鉴定. 细胞与分子免疫学杂志, 2007, 23(5): 457-459. Jing L X, Cai X F, Mu S Z, et al.Chinese Journal of Cellular and Molecular Immunology, 2007, 23(5): 457-459.

[8] 李俊, 郑秀丽, 邓平建, 等. 商品化转基因植物的外源基因及其检测技术. 中国农业科技导报, 2008, 10(3): 31-39. Li J, Zhen X L, Deng P J, et al. Journal of Agricultural Science and Technology, 2008, 10(9): 31-39.

[9] 黄昆仑, 罗云波. 用巢式和半巢式PCR检测转基因大豆Roundup Ready及其深加工食品. 农业生物技术学报, 2003, 11(6): 461-466. Huang K L, Luo Y B.Journal of Agricultual Biotechnology, 2003, 11(6): 461-466.

[10] Matsuoka T, Kuribara H, Akiyama H, et al. A multiplex PCR method of detecting recombinant DNAs from five lines of genetically modified maize. Shokuhin Eiseigaku Zasshi, 2001, 42(1): 24-32.

[11] Forte V, Di P A, Martino C, et al. A general multiplex-PCR assay for the general detection of genetically modified soya and maize. Food Control, 2005, 16(6): 535-539.

[12] 敖金霞, 高学军, 于艳波, 等. 转基因大豆、玉米、水稻深加工产品的五重巢式PCR技术检测. 中国农业大学学报, 2010, 15(2): 93-99. Ao J X, Gao X J, Yu Y B, et al.Journal of China Agricultural University, 2010, 15(2): 93-99.

[13] Turano M, Angrisani A, De R M, et al. Real-time PCR quantification of human DKC1 expression in colorectal cancer. Acta Oncol, 2008, 47(8): 1598-1599.

[14] Zaayman D, Human S, Venter M. A highly sensitive method for the detection and genotyping of West Nile virus by real-time PCR. J Virol Methods, 2009, 157(2): 155-160.

[15] Zivkovic M, Stankovic A, Dincic E, et al. The tag SNP for HLA-DRB1*1501, rs3135388, is significantly associated with multiple sclerosis susceptibility: cost-effective high-throughput detection by real-time PCR. Clin Chim Acta, 2009, 406(1-2): 27-30.

[16] Vaitilingom M, Pijnenburg H, Gendre F, et al. Real-time quantitative PCR detection of genetically modified Maximizer maize and Roundup Ready soybean in some representative foods. J Agric Food Chem, 1999, 47(12): 5261-5266.

[17] Huang C, Pan T. Event-specific real-time detection and quantification of genetically modified Roundup Ready soybean. J Agric Food Chem, 2005, 53(10): 3833-3839.

[18] 刘光明, 李庆阁, 王群力, 等. 多重荧光 PCR 同时检测转基因成分 35S 和 Nos 方法的建立. 厦门大学学报 (自然科学版), 2002, 41(4): 493-497. Liu G M, Li Q G, Wang Q L, et al.Jorunal of Xiamen University(Natural Science), 2002, 41(4): 493-497.

[19] Hhne M, Santisi C, Meyer R. Real-time multiplex PCR: An accurate method for the detection and quantification of 35S-CaMV promoter in genetically modified maize-containing food. European Food Research and Technology, 2002, 215(1): 59-64.

[20] 杨小柯, 郭良让, 杨冬燕, 等. 转基因成分定量分析技术的研究进展. 中国卫生检验杂志, 2008, 18(8): 1682-1686. Yang X K, Guo L Y, Yang D Y, et al. Chinses Journal of Health Laboratory Technology, 2008, 18(8): 1682-1686.

[21] Notomi T, Okayama H, Masubuchi H, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res, 2000, 28(12): E63.

[22] Fukuta S, Mizukami Y, Ishida A, et al. Real-time loop-mediated isothermal amplification for the CaMV-35S promoter as a screening method for genetically modified organisms. European Food Research and Technology, 2004, 218(5): 496-500.

[23] Maeda H, Kokeguchi S, Fujimoto C, et al. Detection of periodontal pathogen Porphyromonas gingivalis by loop-mediated isothermal amplification method. FEMS Immunology and Medical Microbiology, 2005, 43(2): 233-239.

[24] 王永, 兰青阔, 赵新, 等. 转基因作物外源转基因成分环介导等温扩增技术检测方法的建立及应用. 中国农业科学, 2009, 42(4): 1473-1477. Wang Y,Lan Q K,Zhao X, et al. Scientia Agricultura Sinica, 2009, 42(4): 1473-1477.

[25] 刘彩霞, 梁成珠, 徐彪, 等. 抗草甘膦转基因大豆及加工品LAMP检测研究. 大豆科学, 2009, 28(2): 305-309. Liu C X, Hang C Z, Xu B, et al. Soybean Science, 2009, 28(2): 305-309.

[26] Compton J. Nucleic acid sequence-based amplification. Nature, 1991, 350(7): 91-92.

[27] Lau L T, Reid S M, King D P, et al. Detection of foot-and-mouth disease virus by nucleic acid sequence-based amplification (NASBA). Vet Microbiol, 2008, 126(1-3): 101-110.

[28] Cook N. The use of NASBA for the detection of microbial pathogens in food and environmental samples. Journal of microbiological methods, 2003, 53(2): 165-174.

[29] Van Der Meide W F, Peekel I, Van Thiel P P, et al. Treatment assessment by monitoring parasite load in skin biopsies from patients with cutaneous leishmaniasis, using quantitative nucleic acid sequence-based amplification. Clin Exp Dermatol, 2008, 33(4): 394-399.

[30] Timmermans E, Tebas P, Ruiter J, et al. Real-time nucleic acid sequence-based amplification assay to quantify changes in mitochondrial DNA concentrations in cell cultures and blood cells from HIV-infected patients receiving antiviral therapy. Clinical Chemistry, 2006, 52: 979-987.

[31] Morisset D, Dobnik D, HamelS S, et al. NAIMA:target amplification strategy allowing quantitative on-chip detection of GMOs. Nucleic Acids Res, 2008, 36(18): e118.

[32] Dobnik D, Morisset D, Gruden K. NAIMA as a solution for future GMO diagnostics challenges. Anal Bioanal Chem, 2010, 396: 2229-2233.

[33] Sun G, Kaushal R, Pal P, et al. Whole-genome amplification: relative efficiencies of the current methods. Leg Med (Tokyo), 2005, 7(5): 279-286.

[34] Dean F, Hosono S, Fang L, et al. Comprehensive human genome amplification using multiple displacement amplification. Proceedings of the National Academy of Sciences, 2002, 99(8): 5261-5266.

[35] Bergen A, Haque K, Qi Y, et al. Comparison of yield and genotyping performance of multiple displacement amplification and OmniPlexTM whole genome amplified DNA generated from multiple DNA sources. Human Mutation, 2005, 26(3): 262-270.

[36] Ling J, Zhuang G, Tazon-Vega B, et al. Evaluation of genome coverage and fidelity of multiple displacement amplification from single cells by SNP array. Mol Hum Reprod, 2009, 15(11): 739-747.

[37] Hellani A, Coskun S, Tbakhi A, et al. Clinical application of multiple displacement amplification in preimplantation genetic diagnosis. Reprod Biomed Online, 2005, 10(3): 376-380.

[38] Roth L, Zagon J, Laube I, et al. Generation of reference material by the use of multiple displacement amplification (MDA) for the detection of genetically modified organisms(GMOs). Food Analytical Methods, 2008, 1(3): 181-189.

[39] Gonzalez J, PortillO M, Saiz-Jimenez C. Multiple displacement amplification as a pre-polymerase chain reaction (pre-PCR) to process difficult to amplify samples and low copy number sequences from natural environments. Environmental Microbiology, 2005, 7(7): 1024-1028.

[40] Leimanis S, Hernandez M, Fernandez S, et al. A microarray-based detection system for genetically modified (GM) food ingredients. Plant Mol Biol, 2006, 61: 123-139.

[41] Xu J, Miao H, Wu H, et al. Screening genetically modified organisms using multiplex-PCR coupled with oligonucleotide microarray. Biosens Bioelectron, 2006, 22(1): 71-77.

[42] Xu J, Zhu S, Miao H, et al. Event-specific detection of seven genetically modified soybean and maizes using multiplex-PCR coupled with oligonucleotide microarray. J Agric Food Chem, 2007, 55(14): 5575-5579.

[43] Zhou P P, Zhang J Z, You Y H, et al. Detection of genetically modified crops by combination of multiplex PCR and low-density DNA microarray. Biomed Environ Sci, 2008, 21(1): 53-62.

[44] Nesvold H, Kristoffersen A B, Holst-Jensen A, et al. Design of a DNA chip for detection of unknown genetically modified organisms (GMOs). Bioinformatics, 2005, 21(9): 1917-1926.

[45] Tengs T, Kristoffersen A B, Berdal K G, et al. Microarray-based method for detection of unknown genetic modifications. BMC Biotechnol, 2007, 7: 91.

[46] 周晓光, 任鲁风, 李运涛, 等. 下一代测序技术: 技术回顾与展望. 中国科学:生命科学, 2010, 40(1): 23-37. Zhou X G, Ren L F, Li Y T, et al. Sci China Life Sci, 2010, 40(1): 23-37.

[47] Akritidis P, Pasentsis K, Tsaftaris A, et al. Identification of unknown genetically modified material admixed in conventional cotton seed and development of an event-specific detection method. Electronic Journal of Biotechnology, 2008, 11: 76-83.

[48] Elenis D, Kalogianni D, Glynou K, et al. Advances in molecular techniques for the detection and quantification of genetically modified organisms. Analytical and Bioanalytical Chemistry, 2008, 392(3): 347-354.

[49] Feriotto G, Borgatti M, Mischiati C, et al. Biosensor technology and surface plasmon resonance for real-time detection of genetically modified Roundup Ready soybean gene sequences. J Agric Food Chem, 2002, 50(5): 955-962.

[50] Feriotto G, Gardenghi S, Bianchi N, et al. Quantitation of Bt-176 maize genomic sequences by surface plasmon resonance-based biospecific interaction analysis of multiplex polymerase chain reaction (PCR). J Agric Food Chem, 2003, 51(16): 4640-4646.

[51] Mannelli I, Minunni M, Tombelli S, et al. Quartz crystal microbalance (QCM) affinity biosensor for genetically modified organisms (GMOs) detection. Biosensors and Bioelectronics, 2003, 18(2-3): 129-140.

[52] Karamollaoglu I, Ktem H, Mutlu M. QCM-based DNA biosensor for detection of genetically modified organisms (GMOs). Biochemical Engineering Journal, 2009, 44(2-3): 142-150.

[53] Passamano M, Pighini M. QCM DNA-sensor for GMOs detection. Sensors and Actuators B: Chemical, 2006, 118(1-2): 177-181.

[54] Stobiecka M, Cie LA J, Janowska B, et al. Piezoelectric sensor for determination of genetically modified soybean roundup ready(R) in samples not amplified by PCR. Sensors, 2007, 7: 1462-1479.

[55] Tichoniuk M, Ligaj M, Filipiak M. Application of DNA hybridization biosensor as a screening method for the detection of genetically modified food components. Sensors, 2008, 8(4): 2118-2135.

[56] Xu K, Ye Z Z,Ying Y B. Electrochemical deoxyribonucleic acid biosensor for quantitative detection of NOS gene sequence. Chinese Journal of Analytical Chemistry, 2008, 8:1113-1116.

[57] Sun W, Zhong J, Qin P, et al. Electrochemical biosensor for the detection of cauliflower mosaic virus 35 S gene sequences using lead sulfide nanoparticles as oligonucleotide labels. Analytical biochemistry, 2008, 377(2): 115-119.

[58] Jiang C, Yang T, Jiao K, et al.A DNA electrochemical sensor with poly-l-lysine/single-walled carbon nanotubes films and its application for the highly sensitive EIS detection of PAT gene fragment and PCR amplification of NOS gene. Electrochimica Acta, 2008, 53(6): 2917-2924.

[59] Kalogianni D, Koraki T, Christopoulos T, et al. Nanoparticle-based DNA biosensor for visual detection of genetically modified organisms. Biosensors and Bioelectronics, 2006, 21(7): 1069-1076.

[60] Nadal A, Coll A, La Paz J, et al. A new PCR-CGE (size and color) method for simultaneous detection of genetically modified maize events. Electrophoresis, 2006, 27(19): 3879-3888.

[61] Nadal A, Esteve T, Pla M. Multiplex Polymerase Chain Reaction-Capillary Gel Electrophoresis: A Promising Tool for GMO Screening-Assay for Simultaneous Detection of Five Genetically Modified Cotton Events and Species. Journal of AOAC International, 2009, 92(3): 765-772.

[62] 周颖, 黎源倩, 裴晓方. 转基因玉米的多重 PCR-毛细管电泳-激光诱导荧光检测方法研究. 高等学校化学学报, 2007, 28(8): 1458-1463. Zhou Y, Li Y Q, Pei X F.Chemical Journal of Chinese Universities, 2007, 28(8): 1458-1463.

[63] Guo L, Yang H, Qiu B, et al. Capillary electrophoresis with electrochemiluminescent detection for highly sensitive assay of genetically modified organisms. Analytical chemistry, 2009, 81(23): 9578-9584.

[64] Dinelli G, Bonetti A, Marotti I, et al. Quantitative-competitive polymerase chain reaction coupled with slab gel and capillary electrophoresis for the detection of roundup ready soybean and maize. Electrophoresis, 2006, 27(20): 4029-4038.

[65] 王月荣, 胡坪, 梁琼麟, 等. 碳纳米管修饰电极在生命电分析化学中的应用进展. 分析化学, 2008, 8(8): 1011-1016. Wang Y R, Hu P, Liang Q L, et al. Chinese Journal of Analytical Chemistry, 2008, 8(8): 1011-1016.

[1] XU Wen-juan,SONG Dan,CHEN Dan,LONG Hui,CHEN Yu-bao,LONG Feng. Research Progress of Pathogen Detection Technologies Based on CRISPR/CAS Biosensor[J]. China Biotechnology, 2021, 41(8): 67-74.
[2] TANG Meng-tong,WANG Zhao-guan,LI Jiao-jiao,QI Hao. Application of Terminal Deoxynucleotidyl Transferase in Biosensors and Nucleic Acid Synthesis[J]. China Biotechnology, 2021, 41(5): 51-64.
[3] ZHANG Xue-jie,TANG Jia-bao,LI Ting-dong,GE Sheng-xiang. Advances in Single Molecule Immunoassay[J]. China Biotechnology, 2021, 41(4): 47-54.
[4] SHI Zhong-lin,CUI Jun-sheng,YANG Ke,HU An-zhong,LI Ya-nan,LIU Yong,DNEG Guo-qing,ZHU Can-can,ZHU Ling. Research Progress in Isothermal Amplification of Nucleic Acid Based on Microfluidic Chip[J]. China Biotechnology, 2021, 41(2/3): 116-128.
[5] CHEN Zhong-wei,ZHENG Pu,CHEN Peng-cheng,WU Dan. Screening and Characterization of Thermostable Phytase Mutants[J]. China Biotechnology, 2021, 41(2/3): 30-37.
[6] ZHANG Zheng-yan,CHEN Yu,SONG Li-jie,SU Zheng-quan,ZHANG Hai-yan. Advances in the Application of Field Effect Transistor Biosensor in Biomedical Detection[J]. China Biotechnology, 2021, 41(10): 73-88.
[7] PENG Xiang-lei,WANG Ye,WANG Li-nan,SU Yan-bin,FU Yuan-hui,ZHENG Yan-peng,HE Jin-sheng. Single-Primer PCR for Site-Directed Mutagenesis[J]. China Biotechnology, 2020, 40(8): 19-23.
[8] HAO Xiao-ting,LIU Jun-jie,DENG Yu-lin,ZHANG Yong-qian. Radiation Biosensor Based on Promoter of SOS Reaction and Oxidative Stress Reaction[J]. China Biotechnology, 2020, 40(7): 30-40.
[9] HUANG Zhao-hong,HUANG Yun-hong,HUANG Yan-mei,LONG Zhong-er,SHAN Shan. Advances in Detection and Typing of Diarrheal Escherichia coli with PCR[J]. China Biotechnology, 2020, 40(7): 82-90.
[10] CHENG Ping,ZHANG Yang-zi,MA Xuan,CHEN Xu,ZHU Bao-qing,XU Wen-tao. Properties and Applications of Stimuli-Responsive DNA Hydrogels[J]. China Biotechnology, 2020, 40(3): 132-143.
[11] LIU Li-yan,LIU Qi-qi,ZHANG Ying,WANG Sheng-qi. The Study of a Novel Nucleic Acid Detection Technology by Double-stranded Probe Real-time PCR[J]. China Biotechnology, 2020, 40(11): 28-34.
[12] YANG Lin,WANG Liu-yue,LI Hui-mei,CHEN Hua-bo. Multi-site Specific Mutagenesis by Multi-fragment Overlap Extension PCR[J]. China Biotechnology, 2019, 39(8): 52-58.
[13] Li DU,Ling-qia SU,Jing WU. Enhancing Maltose Affinity of Bacillus circulans 251 β-CGTase and its Application in Trehalose Preparation[J]. China Biotechnology, 2019, 39(5): 96-104.
[14] JIN Xue,SONG Jing-zhen,XIE Zhi-ping. Searching for the Subcellular Targeting Sequences of Ste2,a GPCR Protein in Saccharomyces cerevisiae[J]. China Biotechnology, 2019, 39(11): 39-53.
[15] LI Hang,WANG Tong. Research Progress on Overcoming Debye Screening Effect of Silicon Nanowire Field-effect Transistor Biosensor[J]. China Biotechnology, 2019, 39(10): 112-116.