Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2009, Vol. 29 Issue (01): 105-110    DOI:
    
Advances in Solid-state Fermentation of microbial Lipase
WANG Xiao-Feng
Download: HTML   PDF(410KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Lipases have catalytic active in both aqueous phase and the non-aqueous phase and have a wide range of application in various industrial areas. However, the high cost of lipase production has restricted its extensive use in industry. Solid state fermentation possesses many advantages, such as low requirement for devices, low energy consumption, low production cost, little pollution to environment and easily being popularized, which have made it an important means in microbial production of lipases. Owing to the rapidly increased energy cost and the people's awareness of environmental protection, the solid state fermentation technique, which was regarded as low-tech in the past, has regained attention and developed rapidly since the 1990s. This paper reviews the production of lipase by SSF technique.Mainly contents describe its characteristics, including physical and chemical factors and bioreactors.



Key wordssolid-state fermentation      lipase      substrates      bioreactor     
Received: 11 September 2008      Published: 25 January 2009
ZTFLH:  Q55  
Cite this article:

WANG Xiao-Feng. Advances in Solid-state Fermentation of microbial Lipase. China Biotechnology, 2009, 29(01): 105-110.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2009/V29/I01/105

[1] WANG Hui-lin,ZHOU Kai-qiang,ZHU Hong-yu,WANG Li-jing,YANG Zhong-fan,XU Ming-bo,CAO Rong-yue. Research Progress of Human Coagulation Factor VII and the Recombinant Expression Systems[J]. China Biotechnology, 2021, 41(2/3): 129-137.
[2] ZHOU Hui-ying,ZHOU Cui-xia,ZHANG Ting,WANG Xue-yu,ZHANG Hui-tu,JI Yi-zhi,LU Fu-ping. Enhancing the Expression of the Substrate by the Extracellular Secreted Enzymes and Improving the Alkaline Protease Production in Bacillus licheniformis[J]. China Biotechnology, 2021, 41(2/3): 53-62.
[3] WEI Zi-xiang,ZHANG Liu-qun,LEI Lei,HAN Zheng-gang,YANG Jiang-ke. Improving the Activity and Thermal Stability of Thermomyces lanuginosus Lipase by Rational Design[J]. China Biotechnology, 2021, 41(2/3): 63-69.
[4] JIN Lu,ZHOU Hang,CAO Yun,WANG Zhou-shou,CAO Rong-yue. Research on Applications of High-Throughput Perfusion Models in Bioprocessing Development[J]. China Biotechnology, 2020, 40(8): 63-73.
[5] ZHU Heng,ZHANG Ji-fu,ZHANG Yun,HU Yun-feng. Immobilization of Marine Candida Lipase Using Novel Epoxy Cross-linker and Amino Carrier[J]. China Biotechnology, 2020, 40(5): 57-68.
[6] ZHU Heng,ZHANG Ji-fu,ZHANG Yun,SUN Ai-jun,HU Yun-feng. Immobilization of Lipase Through Cross-linking of Polyethylene Glycol Diglycidyl Ether with Amino Carrier LX-1000EA[J]. China Biotechnology, 2020, 40(1-2): 124-132.
[7] LIANG Zhen-xin,LIU Fang,ZHANG wei,LIU Qing-you,LI Li. The Preparation and Validation of p185 erb B2 Human-mouse Chimeric Antibody ChAb26 Transgenic Mice Mammary Gl and Bioreactor[J]. China Biotechnology, 2019, 39(8): 40-51.
[8] Heng ZHU,Hai-jiao LIN,Ji-fu ZHANG,Yun ZHANG,Ai-jun SUN,Yun-feng HU. Covalent Immobilization of Marine Candida Rugosa Lipase Using Amino Carrier[J]. China Biotechnology, 2019, 39(7): 71-78.
[9] Hai-jiao LIN,Ji-fu ZHANG,Yun ZHANG,Ai-jun SUN,Yun-feng HU. The Effective of Additives on the Immobilization of Lipase by Microporous Absorbent Resin[J]. China Biotechnology, 2019, 39(4): 38-51.
[10] Yan HUANG,Yi-rong SUN,Jing WU,Ling-qia SU. Optimization of High Density Fermentation of Recombinant Humicola insolens Cutinase[J]. China Biotechnology, 2019, 39(1): 63-70.
[11] Yu-lei GUO,Liang TANG,Rui-qiang SUN,You LI,Yi-jun CHEN. High-Throughput Micro Bioreactor Development for Biopharmaceuticals[J]. China Biotechnology, 2018, 38(8): 69-75.
[12] Ya-fang LI,Ying-hui ZHAO,Sai-bao LIU,Wei WANG,Wei-jun ZENG,Jin-quan WANG,Hong-yan CHEN,Qing-wen MENG. Chicken OV Promoter Expressed HA to Protect Chickens from Lethal Challenge of AIV[J]. China Biotechnology, 2018, 38(7): 67-74.
[13] Hong-qiu SHI,Dai-ming ZHA,Bing-huo ZHANG,Han-quan LI. Research Advances in Whole-cell Lipases[J]. China Biotechnology, 2018, 38(11): 51-58.
[14] Jing-jing SUN,Wei-wei ZHOU,Lei-ming ZHOU,Qiao-hui ZHAO,Gui-lin LI. Advance in Large-Scale Culture of Hybridoma Cells in Vitro[J]. China Biotechnology, 2018, 38(10): 82-89.
[15] YANG Jian-wei, XUE Zheng-lian, ZHU Hao, YANG Meng, WANG Zhou. Study on the Mutagenic Effect of Phospholipase A1 Recombinant Plasmid by ARTP[J]. China Biotechnology, 2017, 37(6): 78-85.