Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (7): 77-87    DOI: 10.13523/j.cb.2211057
    
Advances in Ide.pngication of RNA-binding Proteins Based on Mass Spectrometry
Ruo-hang SUN,Rui-bing CHEN**()
School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
Download: HTML   PDF(2009KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

RNA-binding proteins (RBPs) can bind RNAs through RNA-binding domains and regulate the fate or functions of their bound RNAs. RBPs are responsible for all the steps of RNA metabolism throughout their life cycle and are involved in many other cellular processes related to cell’s survival, replication, and adaption to environmental changes. RNA-protein interactions are essential to cell homeostasis, and their defects are associated with various diseases. Therefore, the characterization of RBPs is crucial to depict their functions and underlying molecular mechanisms. Recently, several methods have been developed and extensively applied to ide.pngy RBPs, uncovering many previously unannotated RBPs. However, the majority of the newly discovered RBPs lack classical RNA-binding domains, thus highlighting the complexity and diversity of RNA-protein interactions. Here, the progress in the ide.pngication of RBPs based on mass spectrometry was reviewed, from two aspects: high-throughput ide.pngication and targeted ide.pngication. Moreover, their technical principles, application areas, and strengths and limitations were discussed, providing new perspectives to better understand the biological significance and clinical implications of RNA-protein interactions.



Key wordsRNA-binding protein      RNA-protein interaction      Proteomics      Mass spectrometry     
Received: 29 November 2021      Published: 03 August 2023
ZTFLH:  Q71  
Cite this article:

Ruo-hang SUN, Rui-bing CHEN. Advances in Ide.pngication of RNA-binding Proteins Based on Mass Spectrometry. China Biotechnology, 2023, 43(7): 77-87.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2211057     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I7/77

Fig.1 Schematic diagram of RIC strategy
Fig.2 Schematic diagram of high-throughput ide.pngication of the RBPs based on RNA labeling (a) RBR-ID ide.pngies RBPs by quantitative proteomics based on the decrease in the mass spectrometric intensities of the RBPs after UV-CL (b) 5-EU metabolically labeled RNA are crosslinked to RBPs, and the RNA-protein complexes containing 5-EU are linked with azide-biotin via click chemistry reaction to enable affinity purification with SA-coated beads (e.g., RICK and CARIC) (c) RNAs are labeled by PP under UV irradiation, and then the crosslinked RNA-protein complexes are purified by SA-coated beads
Fig.3 Schematic diagram of high-throughput ide.pngication of the RBPs based on physicochemical properties (a) Biphasic extraction strategy uses AGPC to isolate crosslinked RNA-protein complexes based on their solubility (e.g., XRNAX and OOPS) (b) TRAPP isolates UV-crosslinked RNA-protein complexes based on their silica affinity (c) Ide.pngication of RBPs based on their RNase-sensitive MW shift (e.g., R-DeeP and DIF-FRAC)
Fig.4 Schematic diagram of the targeted ide.pngication of RBPs in vitro (a) RNA tags are used to purify the target RNA and its binding proteins by affinity beads. After incubation with cell lysates, target RNA-binding proteins are eluted and analyzed by mass spectrometry (b) Fluorescence labeled RNAs are hybridized to a protein microarray to detect and qua.pngy RNA binding via fluorescence measurement
Fig.5 Schematic diagram of the targeted ide.pngication of RBPs in vivo (a) Biotinylated antisense nucleotide probes are used to isolate the target RNA and associated proteins after UV or chemical crosslinking (e.g., CHART, ChIRP, and RAP) (b) Aptamers incorporated target RNAs are expressed in the cells to isolate the binding proteins (e.g., MS2-BioTRAP, RaPID, and TOBAP-MS) (c) dCas13 fused to a proximity-labeling enzyme are recruited to target RNA by gRNA, and RBPs are biotinylated and isolated with SA-coated beads (e.g., CRUIS and CARPID)
方法 应用 优势 局限性 参考文献
RIC Poly(A)-RBPome 体内,无需核苷酸标记 交联,只适用于poly(A)RNA [12,14???? -19]
RBR-ID RBPome 体内,无需核苷酸标记,适用于
各种RNA
交联,假阳性和假阴性 [21]
RICK、CARIC RBPome 体内,适用于各种RNA 交联,核苷酸标记 [22-23]
PP探针RNA标记 RBPome 体内,体外RNA标记,适用于
各种RNA
交联,非特异性富集 [24]
基于AGPC的方法 RBPome 体内,无需核苷酸标记,适用于
各种RNA,覆盖率高
交联,非特异性富集 [25???-29]
TRAPP RBPome 体内,无需核苷酸标记,适用于
各种RNA
交联,非特异性富集 [30]
R-DeeP、DIF-FRAC RBPome 体内,无需核苷酸标记,无需交联 分析复杂,假阳性和假阴性 [31-32]
RNA沉降技术 MALAT1、SLERT RNA-蛋白质结合力强 体外,高丰度蛋白干扰 [4,34]
蛋白微阵列 小核仁RNA、
SNORD50A等
无需裂解细胞,灵敏度高 体外,重组蛋白质性质影响鉴定结果 [35,36]
CHART、ChIRP、RAP NEAT1、MALAT1、Xist 体内,内源性,特异性强 交联,探针设计复杂,样本需求量大 [37??-40]
MS2-BioTRAP 淋巴增强因子-1(lymphoid enhancer factor-1)mRNA 体内 RNA、蛋白质外源表达 [41]
RAPID Zika病毒RNA 体内,直接标记蛋白质 RNA、蛋白质外源表达 [42]
TOBAP-MS HULC 体内,直接标记蛋白质,无需蛋白质
外源表达
RNA外源表达 [43]
CBRIP U1小核RNA 体内 交联,gRNA设计,间接标记蛋白质 [44]
CRUIS NORAD 体内,直接标记蛋白质 gRNA设计 [45]
CARPID Xist、DANCR、MALAT1 体内,直接标记蛋白质 gRNA设计 [46]
Table 1 List of the high-throughput and targeted methods for ide.pngication of RBPs
[1]   Ramanathan M, Porter D F, Khavari P A. Methods to study RNA-protein interactions. Nature Methods, 2019, 16(3): 225-234.
doi: 10.1038/s41592-019-0330-1 pmid: 30804549
[2]   Hentze M W, Castello A, Schwarzl T, et al. A brave new world of RNA-binding proteins. Nature Reviews Molecular Cell Biology, 2018, 19(5): 327-341.
doi: 10.1038/nrm.2017.130 pmid: 29339797
[3]   Bou-Nader C, Gordon J M, Henderson F E, et al. The search for a PKR code-differential regulation of protein kinase R activity by diverse RNA and protein regulators. RNA, 2019, 25(5): 539-556.
doi: 10.1261/rna.070169.118 pmid: 30770398
[4]   Chen R B, Liu Y, Zhuang H, et al. Quantitative proteomics reveals that long non-coding RNA MALAT1 interacts with DBC1 to regulate p53 acetylation. acetylation. Nucleic Acids Research, 2017, 45(17): 9947-9959.
[5]   Li D, Liu X F, Zhou J, et al. Long noncoding RNA HULC modulates the phosphorylation of YB-1 through serving as a scaffold of extracellular signal-regulated kinase and YB-1 to enhance hepatocarcinogenesis. Hepatology, 2017, 65(5): 1612-1627.
doi: 10.1002/hep.29010 pmid: 28027578
[6]   Gebauer F, Schwarzl T, Valcárcel J, et al. RNA-binding proteins in human genetic disease. Nature Reviews Genetics, 2021, 22(3): 185-198.
doi: 10.1038/s41576-020-00302-y pmid: 33235359
[7]   Wu X Q, Xu L. The RNA-binding protein HuR in human cancer: a friend or foe? Advanced Drug Delivery Reviews, 2022, 184: 114179.
doi: 10.1016/j.addr.2022.114179
[8]   Wang X J, Liu R L, Zhu W C, et al. UDP-glucose accelerates SNAI 1 mRNA decay and impairs lung cancer metastasis. Nature, 2019, 571(7763): 127-131.
doi: 10.1038/s41586-019-1340-y
[9]   Ule J, Jensen K B, Ruggiu M, et al. CLIP ide.pngies Nova-regulated RNA networks in the brain. Science, 2003, 302(5648): 1212-1215.
doi: 10.1126/science.1090095
[10]   Nechay M, Kleiner R E. High-throughput approaches to profile RNA-protein interactions. Current Opinion in Chemical Biology, 2020, 54: 37-44.
doi: S1367-5931(19)30121-8 pmid: 31812895
[11]   Lorenz D A, Her H L, Shen K A, et al. Multiplexed transcriptome discovery of RNA-binding protein binding sites by antibody-barcode eCLIP. Nature Methods, 2023, 20(1): 65-69.
doi: 10.1038/s41592-022-01708-8 pmid: 36550273
[12]   Castello A, Fischer B, Eichelbaum K, et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell, 2012, 149(6): 1393-1406.
doi: 10.1016/j.cell.2012.04.031 pmid: 22658674
[13]   Knörlein A, Sarnowski C P, de Vries T, et al. Nucleotide-amino acid π-stacking interactions initiate photo cross-linking in RNA-protein complexes. Nature Communications, 2022, 13(1): 2719.
doi: 10.1038/s41467-022-30284-w pmid: 35581222
[14]   Kwon S C, Yi H, Eichelbaum K, et al. The RNA-binding protein repertoire of embryonic stem cells. Nature Structural & Molecular Biology, 2013, 20(9): 1122-1130.
doi: 10.1038/nsmb.2638
[15]   Panhale A, Richter F M, Ramírez F, et al. CAPRI enables comparison of evolutionarily conserved RNA interacting regions. Nature Communications, 2019, 10(1): 2682.
doi: 10.1038/s41467-019-10585-3 pmid: 31213602
[16]   Despic V, Dejung M, Gu M T, et al. Dynamic RNA-protein interactions underlie the zebrafish maternal-to-zygotic transition. Genome Research, 2017, 27(7): 1184-1194.
doi: 10.1101/gr.215954.116 pmid: 28381614
[17]   Matia-González A M, Laing E E, Gerber A P. Conserved mRNA-binding proteomes in eukaryotic organisms. Nature Structural & Molecular Biology, 2015, 22(12): 1027-1033.
doi: 10.1038/nsmb.3128
[18]   Beckmann B M, Horos R, Fischer B, et al. The RNA-binding proteomes from yeast to man harbour conserved enigmRBPs. Nature Communications, 2015, 6: 10127.
doi: 10.1038/ncomms10127 pmid: 26632259
[19]   Reichel M, Liao Y L, Rettel M, et al. In planta determination of the mRNA-binding proteome of Arabidopsis etiolated seedlings. The Plant Cell, 2016, 28(10): 2435-2452.
doi: 10.1105/tpc.16.00562
[20]   Mestre-Farràs N, Guerrero S, Bley N, et al. Melanoma RBPome ide.pngication reveals PDIA 6 as an unconventional RNA-binding protein involved in metastasis. Nucleic Acids Research, 2022, 50(14): 8207-8225.
doi: 10.1093/nar/gkac605 pmid: 35848924
[21]   He C S, Sidoli S, Warneford-Thomson R, et al. High-resolution mapping of RNA-binding regions in the nuclear proteome of embryonic stem cells. Molecular Cell, 2016, 64(2): 416-430.
doi: S1097-2765(16)30586-X pmid: 27768875
[22]   Bao X C, Guo X P, Yin M H, et al. Capturing the interactome of newly transcribed RNA. Nature Methods, 2018, 15(3): 213-220.
doi: 10.1038/nmeth.4595 pmid: 29431736
[23]   Huang R B, Han M T, Meng L Y, et al. Transcriptome-wide discovery of coding and noncoding RNA-binding proteins. Proceedings of the National Academy of Sciences, 2018, 115(17): E3879-E3887.
[24]   Zhang Z, Liu T, Dong H Y, et al. An RNA tagging approach for system-wide RNA-binding proteome profiling and dynamics investigation upon transcription inhibition. Nucleic Acids Research, 2021, 49(11): e65.
doi: 10.1093/nar/gkab156 pmid: 33693821
[25]   Trendel J, Schwarzl T, Horos R, et al. The human RNA-binding proteome and its dynamics during translational arrest. Cell, 2019, 176(1-2): 391-403, e19.
doi: S0092-8674(18)31463-6 pmid: 30528433
[26]   Queiroz R M L, Smith T, Villanueva E, et al. Comprehensive ide.pngication of RNA-protein interactions in any organism using orthogonal organic phase separation (OOPS). Nature Biotechnology, 2019, 37(2): 169-178.
doi: 10.1038/s41587-018-0001-2 pmid: 30607034
[27]   Urdaneta E C, Vieira-Vieira C H, Hick T, et al. Purification of cross-linked RNA-protein complexes by phenol-toluol extraction. Nature Communications, 2019, 10: 990.
doi: 10.1038/s41467-019-08942-3 pmid: 30824702
[28]   Yan S, Zhao D Q, Wang C Q, et al. Characterization of RNA-binding proteins in the cell nucleus and cytoplasm. Analytica Chimica Acta, 2021, 1168: 338609.
doi: 10.1016/j.aca.2021.338609
[29]   Luo H X, Tang W, Liu H Y, et al. Photocatalytic chemical crosslinking for profiling RNA-protein interactions in living cells. Angewandte Chemie International Edition, 2022, 61(27): e202202008.
[30]   Shchepachev V, Bresson S, Spanos C, et al. Defining the RNA interactome by total RNA-associated protein purification. Molecular Systems Biology, 2019, 15(4): e8689.
doi: 10.15252/msb.20188689
[31]   Caudron-Herger M, Rusin S F, Adamo M E, et al. R-DeeP: proteome-wide and quantitative ide.pngication of RNA-dependent proteins by density gradient ultracentrifugation. Molecular Cell, 2019, 75(1): 184-199, e10.
doi: S1097-2765(19)30310-7 pmid: 31076284
[32]   Mallam A L, Sae-Lee W, Schaub J M, et al. Systematic discovery of endogenous human ribonucleoprotein complexes. Cell Reports, 2019, 29(5): 1351-1368, e5.
doi: S2211-1247(19)31257-4 pmid: 31665645
[33]   Rajagopal V, Loubal A S, Engel N, et al. Proteome-wide ide.pngication of RNA-dependent proteins in lung cancer cells. Cancers, 2022, 14(24): 6109.
doi: 10.3390/cancers14246109
[34]   Xing Y H, Yao R W, Zhang Y, et al. SLERT regulates DDX21 rings associated with Pol I transcription. Cell, 2017, 169(4): 664-678, e16.
doi: 10.1016/j.cell.2017.04.011
[35]   Kretz M, Siprashvili Z, Chu C, et al. Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature, 2013, 493(7431): 231-235.
doi: 10.1038/nature11661
[36]   Siprashvili Z, Webster D E, Johnston D, et al. The noncoding RNAs SNORD50A and SNORD50B bind K-Ras and are recurrently deleted in human cancer. Nature Genetics, 2016, 48(1): 53-58.
doi: 10.1038/ng.3452 pmid: 26595770
[37]   West J, Davis C P, Sunwoo H, et al. The long noncoding RNAs NEAT1 and MALAT 1 bind active chromatin sites. Molecular Cell, 2014, 55(5): 791-802.
doi: 10.1016/j.molcel.2014.07.012
[38]   Chu C, Zhang Q F C, da Rocha S T, et al. Systematic discovery of Xist RNA binding proteins. Cell, 2015, 161(2): 404-416.
doi: 10.1016/j.cell.2015.03.025 pmid: 25843628
[39]   Engreitz J M, Pandya-Jones A, McDonel P, et al. The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science, 2013, 341(6147): 1237973.
doi: 10.1126/science.1237973
[40]   McHugh C A, Chen C K, Chow A, et al. The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature, 2015, 521(7551): 232-236.
doi: 10.1038/nature14443
[41]   Tsai B P, Wang X R, Huang L, et al. Quantitative profiling of in vivo-assembled RNA-protein complexes using a novel integrated proteomic approach. Molecular & Cellular Proteomics, 2011, 10(4): M110.007385.
[42]   Ramanathan M, Majzoub K, Rao D S, et al. RNA-protein interaction detection in living cells. Nature Methods, 2018, 15(3): 207-212.
doi: 10.1038/nmeth.4601 pmid: 29400715
[43]   Wang C Q, Li Y M, Yan S, et al. Interactome analysis reveals that lncRNA HULC promotes aerobic glycolysis through LDHA and PKM2. Nature Communications, 2020, 11(1): 3162.
doi: 10.1038/s41467-020-16966-3 pmid: 32572027
[44]   Chen B W, Shi H Y, Zhang J, et al. CRISPR-based RNA-binding protein mapping in live cells. Biochemical and Biophysical Research Communications, 2021, 583: 79-85.
doi: 10.1016/j.bbrc.2021.10.059 pmid: 34735883
[45]   Zhang Z H, Sun W P, Shi T Z, et al. Capturing RNA-protein interaction via CRUIS. Nucleic Acids Research, 2020, 48(9): e52.
doi: 10.1093/nar/gkaa143
[46]   Yi W K, Li J Y, Zhu X X, et al. CRISPR-assisted detection of RNA-protein interactions in living cells. Nature Methods, 2020, 17(7): 685-688.
doi: 10.1038/s41592-020-0866-0 pmid: 32572232
[47]   Li X Y, Song J H, Yi C Q. Genome-wide mapping of cellular protein-RNA interactions enabled by chemical crosslinking. Genomics, Proteomics & Bioinformatics, 2014, 12(2): 72-78.
[48]   Sugimoto Y, König J, Hussain S, et al. Analysis of CLIP and iCLIP methods for nucleotide-resolution studies of protein-RNA interactions. Genome Biology, 2012, 13(8): R67.
doi: 10.1186/gb-2012-13-8-r67
[49]   Kramer K, Sachsenberg T, Beckmann B M, et al. Photo-cross-linking and high-resolution mass spectrometry for assignment of RNA-binding sites in RNA-binding proteins. Nature Methods, 2014, 11(10): 1064-1070.
doi: 10.1038/nmeth.3092 pmid: 25173706
[50]   Keil P, Wulf A, Kachariya N, et al. Npl3 functions in mRNP assembly by recruitment of mRNP components to the transcription site and their transfer onto the mRNA. Nucleic Acids Research, 2023, 51(2): 831-851.
doi: 10.1093/nar/gkac1206 pmid: 36583366
[51]   Castello A, Fischer B, Frese C K, et al. Comprehensive ide.pngication of RNA-binding domains in human cells. Molecular Cell, 2016, 63(4): 696-710.
doi: S1097-2765(16)30287-8 pmid: 27453046
[52]   Bae J W, Kwon S C, Na Y, et al. Chemical RNA digestion enables robust RNA-binding site mapping at single amino acid resolution. Nature Structural & Molecular Biology, 2020, 27(7): 678-682.
doi: 10.1038/s41594-020-0436-2
[53]   England W E, Wang J T, Chen S W, et al. An atlas of posttranslational modifications on RNA binding proteins. Nucleic Acids Research, 2022, 50(8): 4329-4339.
doi: 10.1093/nar/gkac243 pmid: 35438783
[54]   Vieira-Vieira C H, Dauksaite V, Sporbert A, et al. Proteome-wide quantitative RNA-interactome capture ide.pngies phosphorylation sites with regulatory potential in RBM20. Molecular Cell, 2022, 82(11): 2069-2083, e8.
doi: 10.1016/j.molcel.2022.03.024 pmid: 35427468
[55]   Raguraman R, Shanmugarama S, Mehta M, et al. Drug delivery approaches for HuR-targeted therapy for lung cancer. Advanced Drug Delivery Reviews, 2022, 180: 114068.
doi: 10.1016/j.addr.2021.114068
[56]   Kashikar R, Kotha A K, Shah S, et al. Advances in nanoparticle mediated targeting of RNA binding protein for cancer. Advanced Drug Delivery Reviews, 2022, 185: 114257.
doi: 10.1016/j.addr.2022.114257
[1] JIN Qian, SHI Meng, LIU Zhan-biao, ZHANG Yi, ZHU Si-qing, SHI Jing-jing, ZONG Xing-xing, CHEN Xue-jun, LI Li-qin. Analysis of Differentially Expressed Proteins in the Cervical Spinal Cord of Guinea Pigs Subacutely Exposed to Soman[J]. China Biotechnology, 2023, 43(2/3): 64-74.
[2] WANG Yu-hang, CHEN Xue-ming, LIU Su-sheng, RUAN Zhi-jun, ZHANG Min, SONG Chun-li, YIN Feng, LI Zi-gang. A Solid-phase Synthesis Method and Purification of Polypeptides[J]. China Biotechnology, 2023, 43(1): 35-41.
[3] LIU Ping-yang, LIU Zhan-fang, ZHOU Hong, ZHU Jun, LIU Yao. Application of Biological Mass Spectrometry in Lipidomics Analysis[J]. China Biotechnology, 2023, 43(1): 87-103.
[4] Gong CHENG,Si-ming JIAO,Li-shi REN,Cui FENG,Yu-guang DU. Preparation and Composition Analysis of Chitooligosaccharides with Low Degree of Deacetylation by Hydrolysis of Bacillus subtilis Chitosanase[J]. China Biotechnology, 2018, 38(9): 19-26.
[5] Qing-meng LI,Sheng-tao LI,Ning WANG,Xiao-dong GAO. Expression, Purification and Activity Assay of Yeast α-1,2 Mannosyltransferase Alg11[J]. China Biotechnology, 2018, 38(6): 26-33.
[6] CHEN Juan, YANG Hui-lin, HUANG Yun-hong, LONG Zhong-er. Screening of the Protein Related to Antibiotics Biosynthesis in Micromonospora carbonacea JXNU-1[J]. China Biotechnology, 2016, 36(7): 55-63.
[7] LV Shan-shan, HOU Yun-hua, YAN Meng-jie, ZHONG Yao-hua. Recent Progress in Mutagenesis Strategies and High-yielding Mechanism for Enzyme Production in Industrial Fungi[J]. China Biotechnology, 2016, 36(3): 111-119.
[8] ZHANG Yan-jun, LIU Rong, ZHANG Meng-nan, ZHANG Xiao-long, YUANXiang-fei, MIAO Qing-fang, ZHEN Yong-su, ZHANG Yi-zhi. The Stability Analysis of IL3 Fusion Protein and Contrast Study of Its Biologic Activity Before and After Protein Modification[J]. China Biotechnology, 2013, 33(3): 117-122.
[9] ZHANG Yuan-yuan, HU Qi-meng, WANG Liang-liang, LI Xin-hong. Resent Advances on Phosphoproteomics Researches of Mammalian Sperm Capacitation[J]. China Biotechnology, 2012, 32(04): 76-82.
[10] TIAN Xiao-mei, REN Jian-hong, FANG Cong. Proteomic Analysis of Pichia pastoris GS115 Cultured in Different Carbon Source Mediums[J]. China Biotechnology, 2012, 32(01): 21-29.
[11] GE Wei-feng, CHU Xiao-he, WANG Yong-hong, ZHANG Si-liang. Optimization of Protease Inhibitor Mixture for Protein Extraction from Cells in Proteomics Study of Streptomyces avermitilis[J]. China Biotechnology, 2010, 30(12): 66-71.
[12] . Examination DNA vaccine-binding proteins in the immune cells[J]. China Biotechnology, 2010, 30(10): 0-0.
[13] JIN Liang, CHEN Shang-wu, MA Hui-qin. Advances in Grape Proteomics[J]. China Biotechnology, 2010, 30(10): 100-107.
[14] . Advances in Grape Proteomics[J]. China Biotechnology, 2010, 30(10): 0-0.
[15] ZHONG Yi-wei, LI Jin-yao, GENG Shuang, WANG Bin. Examination DNA Vaccine-binding Proteins in the Immune Cells[J]. China Biotechnology, 2010, 30(10): 12-16.