Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (5): 76-84    DOI: 10.13523/j.cb.2212035
    
Research Progress on the Role of Mesenchymal Stem Cell Extracellular Vesicles in Lung Diseases
WANG Ze-hua,ZHANG Li-yun,MA Chun-yan()
Key Laboratory of Conservation and Utilization of Special Biological Resources in the Western China, Ministry of Education, College of Life Sciences, Ningxia University, Yinchuan 750021, China
Download: HTML   PDF(663KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Extracellular vesicles (EVs) are lipid vesicles naturally secreted by cells. They play an important role in communication of information in physiological and pathological processes. Mesenchymal stem cells are pluripotent stromal stem cells from a wide range of sources. The potential of mesenchymal stem cell regeneration and its ability of immunomodulation have shown great promise in the repair in and treatment of lung diseases. Mesenchymal stromal cells-EVs (MSCs-EVs) have the same functional characteristics as MSCs, and many active factors carried by MSCs-EVs have shown good therapeutic effects in lung tissue, lung microenvironment and lung diseases. In this paper, the biological characteristics of MSCs and MSCs-EVs were summarized, and the mechanism and clinical application of MSCs-EVs in pulmonary diseases were discussed.



Key wordsMesenchymal stem cell      Extracellular vesicles      Lung disease      Treatment     
Received: 19 January 2023      Published: 01 June 2023
ZTFLH:  Q819  
Cite this article:

WANG Ze-hua, ZHANG Li-yun, MA Chun-yan. Research Progress on the Role of Mesenchymal Stem Cell Extracellular Vesicles in Lung Diseases. China Biotechnology, 2023, 43(5): 76-84.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2212035     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I5/76

Fig.1 Classification of extracellular vesicles
[1]   Cruz F F, Rocco P R M. The potential of mesenchymal stem cell therapy for chronic lung disease. Expert Review of Respiratory Medicine, 2020, 14(1): 31-39.
doi: 10.1080/17476348.2020.1679628 pmid: 31608724
[2]   Guo H Y, Su Y, Deng F. Effects of mesenchymal stromal cell-derived extracellular vesicles in lung diseases: current status and future perspectives. Stem Cell Reviews and Reports, 2021, 17(2): 440-458.
doi: 10.1007/s12015-020-10085-8 pmid: 33211245
[3]   de Abreu R C, Fernandes H, da Costa Martins P A, et al. Native and bioengineered extracellular vesicles for cardiovascular therapeutics. Nature Reviews Cardiology, 2020, 17(11): 685-697.
doi: 10.1038/s41569-020-0389-5
[4]   Shi M M, Yang Q Y, Monsel A, et al. Preclinical efficacy and clinical safety of clinical-grade nebulized allogenic adipose mesenchymal stromal cells-derived extracellular vesicles. Journal of Extracellular Vesicles, 2021, 10(10): e12134.
[5]   Yang C J, Sun J M, Tian Y P, et al. Immunomodulatory effect of MSCs and MSCs-derived extracellular vesicles in systemic lupus erythematosus. Frontiers in Immunology, 2021, 12: 714832.
doi: 10.3389/fimmu.2021.714832
[6]   Aravindhan S, Ejam S S, Lafta M H, et al. Mesenchymal stem cells and cancer therapy: insights into targeting the tumour vasculature. Cancer Cell International, 2021, 21(1): 158.
doi: 10.1186/s12935-021-01836-9 pmid: 33685452
[7]   Friedenstein A J, Chailakhjan R K, Lalykina K S. The development of fibroblast colonies in monolayer cultures of Guinea-pig bone marrow and spleen cells. Cell and Tissue Kinetics, 1970, 3(4): 393-403.
doi: 10.1111/j.1365-2184.1970.tb00347.x pmid: 5523063
[8]   Caplan A I. Mesenchymal stem cells. Journal of Orthopaedic Research: Official Publication of the Orthopaedic Research Society, 1991, 9(5): 641-650.
doi: 10.1002/(ISSN)1554-527X
[9]   Majumdar M K, Thiede M A, Mosca J D, et al. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. Journal of Cellular Physiology, 1998, 176(1): 57-66.
doi: 10.1002/(SICI)1097-4652(199807)176:1<57::AID-JCP7>3.0.CO;2-7 pmid: 9618145
[10]   Wu R Q, Fan X L, Wang Y, et al. Mesenchymal stem cell-derived extracellular vesicles in liver immunity and therapy. Frontiers in Immunology, 2022, 13: 833878.
doi: 10.3389/fimmu.2022.833878
[11]   Keshtkar S, Azarpira N, Ghahremani M H. Mesenchymal stem cell-derived extracellular vesicles: novel frontiers in regenerative medicine. Stem Cell Research & Therapy, 2018, 9(1): 63.
[12]   Rezaie J, Nejati V, Mahmoodi M, et al. Mesenchymal stem cells derived extracellular vesicles: a promising nanomedicine for drug delivery system. Biochemical Pharmacology, 2022, 203: 115167.
doi: 10.1016/j.bcp.2022.115167
[13]   van Niel G, Carter D R F, Clayton A, et al. Challenges and directions in studying cell-cell communication by extracellular vesicles. Nature Reviews Molecular Cell Biology, 2022, 23(5): 369-382.
doi: 10.1038/s41580-022-00460-3 pmid: 35260831
[14]   Yáñez-Mó M, Siljander P R M, Andreu Z, et al. Biological properties of extracellular vesicles and their physiological functions. Journal of Extracellular Vesicles, 2015, 4(1): 27066.
doi: 10.3402/jev.v4.27066
[15]   van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nature Reviews Molecular Cell Biology, 2018, 19(4): 213-228.
doi: 10.1038/nrm.2017.125 pmid: 29339798
[16]   Pegtel D M, Gould S J. Exosomes. Annual Review of Biochemistry, 2019, 88: 487-514.
[17]   Battistelli M, Falcieri E. Apoptotic bodies: particular extracellular vesicles involved in intercellular communication. Biology, 2020, 9(1): 21.
doi: 10.3390/biology9010021
[18]   Sun H Y, Burrola S, Wu J C, et al. Extracellular vesicles in the development of cancer therapeutics. International Journal of Molecular Sciences, 2020, 21(17): 6097.
doi: 10.3390/ijms21176097
[19]   Lo Cicero A, Stahl P D, Raposo G. Extracellular vesicles shuffling intercellular messages: for good or for bad. Current Opinion in Cell Biology, 2015, 35: 69-77.
doi: 10.1016/j.ceb.2015.04.013 pmid: 26001269
[20]   Cheng Y W, Cao X, Qin L J. Mesenchymal stem cell-derived extracellular vesicles: a novel cell-free therapy for Sepsis. Frontiers in Immunology, 2020, 11: 647.
doi: 10.3389/fimmu.2020.00647 pmid: 32373121
[21]   Jafarinia M, Alsahebfosoul F, Salehi H, et al. Mesenchymal stem cell-derived extracellular vesicles: a novel cell-free therapy. Immunological Investigations, 2020, 49(7): 758-780.
doi: 10.1080/08820139.2020.1712416
[22]   Bartel S, Deshane J, Wilkinson T, et al. Extracellular vesicles as mediators of cellular cross talk in the lung microenvironment. Frontiers in Medicine, 2020, 7: 326.
doi: 10.3389/fmed.2020.00326 pmid: 32850874
[23]   Doeppner T R, Herz J, Görgens A, et al. Extracellular vesicles improve post-stroke neuroregeneration and prevent postischemic immunosuppression. Stem Cells Translational Medicine, 2015, 4(10): 1131-1143.
doi: 10.5966/sctm.2015-0078 pmid: 26339036
[24]   Kamerkar S, LeBleu V S, Sugimoto H, et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature, 2017, 546(7659): 498-503.
doi: 10.1038/nature22341
[25]   Zhu X H, Badawi M, Pomeroy S, et al. Comprehensive toxicity and immunogenicity studies reveal minimal effects in mice following sustained dosing of extracellular vesicles derived from HEK293T cells. Journal of Extracellular Vesicles, 2017, 6(1): 1324730.
doi: 10.1080/20013078.2017.1324730
[26]   Martin J D, Cabral H, Stylianopoulos T, et al. Improving cancer immunotherapy using nanomedicines: progress, opportunities and challenges. Nature Reviews Clinical Oncology, 2020, 17(4): 251-266.
doi: 10.1038/s41571-019-0308-z pmid: 32034288
[27]   Davidson L M, Berkelhamer S K. Bronchopulmonary dysplasia: chronic lung disease of infancy and long-term pulmonary outcomes. Journal of Clinical Medicine, 2017, 6(1): 4.
doi: 10.3390/jcm6010004
[28]   Willis G R, Fernandez-Gonzalez A, Anastas J, et al. Mesenchymal stromal cell exosomes ameliorate experimental bronchopulmonary dysplasia and restore lung function through macrophage immunomodulation. American Journal of Respiratory and Critical Care Medicine, 2018, 197(1): 104-116.
doi: 10.1164/rccm.201705-0925OC pmid: 28853608
[29]   Chaubey S, Thueson S, Ponnalagu D, et al. Early gestational mesenchymal stem cell secretome attenuates experimental bronchopulmonary dysplasia in part via exosome-associated factor TSG-6. Stem Cell Research & Therapy, 2018, 9(1): 173.
[30]   Abele A N, Taglauer E S, Almeda M, et al. Antenatal mesenchymal stromal cell extracellular vesicle treatment preserves lung development in a model of bronchopulmonary dysplasia due to chorioamnionitis. American Journal of Physiology. Lung Cellular and Molecular Physiology, 2022, 322(2): L179-L190.
[31]   Ahn S Y, Park W S, Kim Y E, et al. Vascular endothelial growth factor mediates the therapeutic efficacy of mesenchymal stem cell-derived extracellular vesicles against neonatal hyperoxic lung injury. Experimental & Molecular Medicine, 2018, 50(4): 1-12.
[32]   Lopes-Pacheco M, Robba C, Rocco P, et al. Current understanding of the therapeutic benefits of mesenchymal stem cells in acute respiratory distress syndrome. Cell Biol Toxicol, 2019, 36: 83.
doi: 10.1007/s10565-019-09493-5
[33]   Abraham A, Krasnodembskaya A. Mesenchymal stem cell-derived extracellular vesicles for the treatment of acute respiratory distress syndrome. Stem Cells Translational Medicine, 2020, 9(1): 28-38.
doi: 10.1002/sctm.19-0205 pmid: 31647191
[34]   Khatri M, Richardson L A, Meulia T. Mesenchymal stem cell-derived extracellular vesicles attenuate influenza virus-induced acute lung injury in a pig model. Stem Cell Research & Therapy, 2018, 9(1): 17.
[35]   Hu S, Park J, Liu A, et al. Mesenchymal stem cell microvesicles restore protein permeability across primary cultures of injured human lung microvascular endothelial cells. Stem Cells Translational Medicine, 2018, 7(8): 615-624.
doi: 10.1002/sctm.17-0278 pmid: 29737632
[36]   Li J W, Wei L, Han Z, et al. Mesenchymal stromal cells-derived exosomes alleviate ischemia/reperfusion injury in mouse lung by transporting anti-apoptotic miR-21-5p. European Journal of Pharmacology, 2019, 852: 68-76.
doi: S0014-2999(19)30055-X pmid: 30682335
[37]   Yi X, Wei X, Lv H, et al. Exosomes derived from microRNA-30b-3p-overexpressing mesenchymal stem cells protect against lipopolysaccharide-induced acute lung injury by inhibiting SAA3. Experimental Cell Research, 2019, 383(2): 111454.
doi: 10.1016/j.yexcr.2019.05.035
[38]   Chen W X, Zhou J, Zhou S S, et al. Microvesicles derived from human Wharton’s jelly mesenchymal stem cells enhance autophagy and ameliorate acute lung injury via delivery of miR-100. Stem Cell Research & Therapy, 2020, 11(1): 113.
[39]   Hao Q, Gudapati V, Monsel A, et al. Mesenchymal stem cell-derived extracellular vesicles decrease lung injury in mice. Journal of Immunology (Baltimore, Md. : 1950), 2019, 203(7): 1961-1972.
doi: 10.4049/jimmunol.1801534
[40]   Song Y, Dou H, Li X, et al. Exosomal miR-146a contributes to the enhanced therapeutic efficacy of interleukin-1β-primed mesenchymal stem cells against sepsis. Stem Cells (Dayton, Ohio), 2017, 35(5): 1208-1221.
doi: 10.1002/stem.2564
[41]   Wang J, Huang R, Xu Q, et al. Mesenchymal stem cell-derived extracellular vesicles alleviate acute lung injury via transfer of miR-27a-3p. Critical Care Medicine, 2020, 48(7): e599-e610.
[42]   Morrison T J, Jackson M V, Cunningham E K, et al. Mesenchymal stromal cells modulate macrophages in clinically relevant lung injury models by extracellular vesicle mitochondrial transfer. American Journal of Respiratory and Critical Care Medicine, 2017, 196(10): 1275-1286.
doi: 10.1164/rccm.201701-0170OC pmid: 28598224
[43]   Moss B J, Ryter S W, Rosas I O. Pathogenic mechanisms underlying idiopathic pulmonary fibrosis. Annual Review of Pathology, 2022, 17: 515-546.
doi: 10.1146/pathmechdis.2022.17.issue-1
[44]   Schäfer S, Funke-Chambour M, Berezowska S. Idiopathic pulmonary fibrosis-epidemiology, causes, and clinical course. Der Pathologe, 2020, 41(1): 46-51.
doi: 10.1007/s00292-019-00747-x
[45]   Mansouri N, Willis G R, Fernandez-Gonzalez A, et al. Mesenchymal stromal cell exosomes prevent and revert experimental pulmonary fibrosis through modulation of monocyte phenotypes. JCI Insight, 2019, 4(21): e128060.
doi: 10.1172/jci.insight.128060
[46]   Xu C, Zhao J, Li Q, et al. Exosomes derived from three-dimensional cultured human umbilical cord mesenchymal stem cells ameliorate pulmonary fibrosis in a mouse silicosis model. Stem Cell Research & Therapy, 2020, 11(1): 503.
[47]   Zhang E, Geng X, Shan S, et al. Exosomes derived from bone marrow mesenchymal stem cells reverse epithelial-mesenchymal transition potentially via attenuating Wnt/β-catenin signaling to alleviate silica-induced pulmonary fibrosis. Toxicology Mechanisms and Methods, 2021, 31(9): 655-666.
doi: 10.1080/15376516.2021.1950250
[48]   Sun L, Zhu M, Feng W, et al. Exosomal miRNA Let-7 from menstrual blood-derived endometrial stem cells alleviates pulmonary fibrosis through regulating mitochondrial DNA damage. Oxidative Medicine and Cellular Longevity, 2019, 2019: 4506303.
[49]   Gao Y, Sun J, Dong C, et al. Extracellular vesicles derived from adipose mesenchymal stem cells alleviate PM2.5-induced lung injury and pulmonary fibrosis. Medical Science Monitor : International Medical Journal of Experimental and Clinical Research, 2020, 26: e922782.
[50]   Wan X, Chen S, Fang Y, et al. Mesenchymal stem cell-derived extracellular vesicles suppress the fibroblast proliferation by downregulating FZD 6 expression in fibroblasts via micrRNA-29b-3p in idiopathic pulmonary fibrosis. Journal of Cellular Physiology, 2020, 235(11): 8613-8625.
doi: 10.1002/jcp.v235.11
[51]   Zhou J, Lin Y, Kang X, et al. microRNA-186 in extracellular vesicles from bone marrow mesenchymal stem cells alleviates idiopathic pulmonary fibrosis via interaction with SOX4 and DKK1. Stem Cell Research & Therapy, 2021, 12(1): 96.
[52]   Villamizar O, Waters S A, Scott T, et al. Mesenchymal stem cell exosome delivered zinc finger protein activation of cystic fibrosis transmembrane conductance regulator. Journal of Extracellular Vesicles, 2021, 10(3): e12053.
[53]   Agustí A, Hogg J C. Update on the pathogenesis of chronic obstructive pulmonary disease. The New England Journal of Medicine, 2019, 381(13): 1248-1256.
doi: 10.1056/NEJMra1900475 pmid: 31553836
[54]   Rovina N, Koutsoukou A, Koulouris N G. Inflammation and immune response in COPD: where do we stand? Mediators of Inflammation, 2013, 2013: 413735.
[55]   Harrell C R, Miloradovic D, Sadikot R, et al. Molecular and cellular mechanisms responsible for beneficial effects of mesenchymal stem cell-derived product “Exo-d-MAPPS” in attenuation of chronic airway inflammation. Analytical Cellular Pathology (Amsterdam), 2020, 2020: 3153891.
[56]   Kim Y S, Kim J Y, Cho R, et al. Adipose stem cell-derived nanovesicles inhibit emphysema primarily via an FGF2-dependent pathway. Experimental & Molecular Medicine, 2017, 49(1): e284.
[57]   Maremanda k P, Sundar I K, Rahman I. Protective role of mesenchymal stem cells and mesenchymal stem cell-derived exosomes in cigarette smoke-induced mitochondrial dysfunction in mice. Toxicology and Applied Pharmacology, 2019, 385: 114788.
doi: 10.1016/j.taap.2019.114788
[58]   Hoy R F, Chambers D C. Silica-related diseases in the modern world. Allergy, 2020, 75(11): 2805-2817.
doi: 10.1111/all.v75.11
[59]   Li X, An G, Wang Y, et al. Targeted migration of bone marrow mesenchymal stem cells inhibits silica-induced pulmonary fibrosis in rats. Stem Cell Research & Therapy, 2018, 9(1): 335.
[60]   Choi M, Ban T, Rhim T. Therapeutic use of stem cell transplantation for cell replacement or cytoprotective effect of microvesicle released from mesenchymal stem cell. Molecules and Cells, 2014, 37(2): 133-139.
doi: 10.14348/molcells.2014.2317 pmid: 24598998
[61]   Phinney D G, Di Giuseppe M, Njah J, et al. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nature Communications, 2015, 6: 8472.
doi: 10.1038/ncomms9472 pmid: 26442449
[62]   Bandeira E, Oliveira H, Silva J D, et al. Therapeutic effects of adipose-tissue-derived mesenchymal stromal cells and their extracellular vesicles in experimental silicosis. Respiratory Research, 2018, 19(1): 104.
doi: 10.1186/s12931-018-0802-3 pmid: 29843724
[63]   Papi A, Brightling C, Pedersen S E, et al. Asthma. Lancet (London, England), 2018, 391(10122): 783-800.
[64]   Boldrini-Leite L M, Michelotto P V Jr, de Moura S A B, et al. Lung tissue damage associated with allergic asthma in BALB/c mice could be controlled with a single injection of mesenchymal stem cells from human bone marrow up to 14 d after transplantation. Cell Transplantation, 2020, 29: 963689720913254.
[65]   Du Y M, Zhuansun Y X, Chen R, et al. Mesenchymal stem cell exosomes promote immunosuppression of regulatory T cells in asthma. Experimental Cell Research, 2018, 363(1): 114-120.
doi: 10.1016/j.yexcr.2017.12.021
[66]   de Castro L L, Xisto D G, Kitoko J Z, et al. Human adipose tissue mesenchymal stromal cells and their extracellular vesicles act differentially on lung mechanics and inflammation in experimental allergic asthma. Stem Cell Research & Therapy, 2017, 8(1): 151.
[67]   Fang S B, Zhang H Y, Wang C, et al. Small extracellular vesicles derived from human mesenchymal stromal cells prevent group 2 innate lymphoid cell-dominant allergic airway inflammation through delivery of miR-146a-5p. Journal of Extracellular Vesicles, 2020, 9(1): 1723260.
doi: 10.1080/20013078.2020.1723260
[68]   Dong L Y, Wang Y, Zheng T T, et al. Hypoxic hUCMSC-derived extracellular vesicles attenuate allergic airway inflammation and airway remodeling in chronic asthma mice. Stem Cell Research & Therapy, 2021, 12(1): 4.
[69]   Guazzi M, Naeije R. Pulmonary hypertension in heart failure: pathophysiology, pathobiology, and emerging clinical perspectives. Journal of the American College of Cardiology, 2017, 69(13): 1718-1734.
doi: S0735-1097(17)30566-1 pmid: 28359519
[70]   Lee C J, Alex Mitsialis S, Aslam M, et al. Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation, 2012, 126(22): 2601-2611.
doi: 10.1161/CIRCULATIONAHA.112.114173 pmid: 23114789
[71]   Chen J Y, An R, Liu Z J, et al. Therapeutic effects of mesenchymal stem cell-derived microvesicles on pulmonary arterial hypertension in rats. Acta Pharmacologica Sinica, 2014, 35(9): 1121-1128.
doi: 10.1038/aps.2014.61
[72]   Aliotta J M, Pereira M, Wen S C, et al. Exosomes induce and reverse monocrotaline-induced pulmonary hypertension in mice. Cardiovascular Research, 2016, 110(3): 319-330.
doi: 10.1093/cvr/cvw054 pmid: 26980205
[73]   Zhang C, Wang P, Mohammed A, et al. Function of adipose-derived mesenchymal stem cells in monocrotaline-induced pulmonary arterial hypertension through miR-191 via regulation of BMPR2. BioMed Research International, 2019, 2019: 2858750.
[74]   Hogan S E, Rodriguez Salazar M P, Cheadle J, et al. Mesenchymal stromal cell-derived exosomes improve mitochondrial health in pulmonary arterial hypertension. American Journal of Physiology. Lung Cellular and Molecular Physiology, 2019, 316(5): L723-L737.
[1] JING Jin-peng, ZHU Chao-jun, ZHANG Zhao-hui. Biological Characteristics and Application Potential of Human Amnion-derived Stem Cells[J]. China Biotechnology, 2023, 43(4): 79-91.
[2] HAO Dong-xia, TIAN Meng-yuan, LIU Yang, LI Xing, ZHANG Yuan. Basic Properties and Applications of Milk Exosomes[J]. China Biotechnology, 2023, 43(2/3): 26-42.
[3] LIU Ping-yang, LIU Zhan-fang, ZHOU Hong, ZHU Jun, LIU Yao. Application of Biological Mass Spectrometry in Lipidomics Analysis[J]. China Biotechnology, 2023, 43(1): 87-103.
[4] CHAI Yu-jie,FENG Jia,ZHOU Jian-ting,JIANG Jian-lan. Progress on Biological Treatment Technologies of Microcystins[J]. China Biotechnology, 2022, 42(8): 109-127.
[5] YANG Huan-lian,QIU Fei,WANG Guo-quan,DIAO Yong. Progress in the Research and Application of Tumor Organoids in Drug Screening and Personalized Drug Treatment[J]. China Biotechnology, 2022, 42(6): 47-53.
[6] DENG Jia-qiang, LI Wei-yao, ZHONG Li-jun, YU Shu-min. Research Progress on the Relationship Between Autophagy and Mesenchymal Stem Cell Senescence[J]. China Biotechnology, 2022, 42(3): 55-61.
[7] Yu WANG,Yue-qiu BAI,Yi-xiao TIAN,Xin-yue WANG,Qing-sheng HUANG. Advances and Prospects of mRNA Vaccines Used in the Prevention and Therapies of Diseases[J]. China Biotechnology, 2022, 42(10): 51-59.
[8] LI Kai-xiu,SI Wei. Progress in the Treatment of Inflammatory Bowel Diseases by Exosomes Derived from Mesenchymal Stem Cells[J]. China Biotechnology, 2021, 41(7): 66-73.
[9] WANG Yu-xuan,CHEN Ting,ZHANG Yong-liang. Research Progress on the Biological Function of MiR-148[J]. China Biotechnology, 2021, 41(7): 74-80.
[10] ZHAO Jiu-mei,WANG Zhe,LI Xue-ying. Role of Signal Pathways and Related Factors Regulating Cartilage Formation in Bone Differentiation of Bone Marrow Mesenchymal Stem Cells[J]. China Biotechnology, 2021, 41(10): 62-72.
[11] CHEN Fei,WANG Xiao-bing,XU Zeng-hui,QIAN Qi-jun. Molecular Mechanism and Clinical Research Progress of Mesenchymal Stem Cells in the Treatment of Diabetes Mellitus[J]. China Biotechnology, 2020, 40(7): 59-69.
[12] YUAN Ya-kun,LIU Guang-yang,LIU Yong-jun,XIE Ya-fang,WU Hao. Comparison of Research and Clinical Transformation on Mesenchymal Stem Cells between China and the US[J]. China Biotechnology, 2020, 40(4): 97-107.
[13] WANG Wei-dong,DU Jia-ru,ZHANG Yun-shang,FAN Jian-ming. The Application of CRISPR/Cas9 in the Treatment of Human Virus Infection-Related Diseases[J]. China Biotechnology, 2020, 40(12): 18-24.
[14] LIN Fu-yu,LIU Jin-yi,CHENG Yong-qing. Progress of Interferon α1b Research and Clinical Use Against SARS-CoV-2[J]. China Biotechnology, 2020, 40(12): 1-7.
[15] CHEN Li-jun,QU Jing-jing,XIANG Charlie. Therapeutic Potentials, Clinical Studies, and Application Prospects of Mesenchymal Stem Cells in 2019 Novel Coronavirus (COVID-19)[J]. China Biotechnology, 2020, 40(11): 43-55.