Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (5): 69-75    DOI: 10.13523/j.cb.2211040
    
Research Progress of PLGA as Antigen Delivery System
ZHENG Rui1,2,TU Ye-qing2,WANG Hui2,LUO De-yan2,**()
1 School of Basic Medical Science, Anhui Medical University, Hefei 230032, China
2 State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medicine, Academy of Military Science, Beijing 100071, China
Download: HTML   PDF(448KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In recent years, due to the ravages of the COVID-19, the development of single-injection vaccine has attracted much attention. Traditional vaccine preparations need to be inoculated repeatedly for a period of time to produce enough neutralizing antibodies. In order to reduce the number of vaccination shots and improve people’s vaccination compliance, polymer materials have gradually entered people’s field of vision. Among them, Poly lactic-co-glycolic acid (PLGA) is one of the most studied and widely used polymer materials. As a synthetic polymer material, PLGA is easy to prepare and relatively low in price, and it has favorable sustained release characteristics and has good biosafety and histocompatibility. It has been approved by the U.S. Food and Drug Administration (FDA) as a drug delivery system, but it is in the ascendant in vaccine research and development. Based on the current research progress, this article summarizes the basic information of PLGA adjuvants and the related factors affecting their sustained release effect and immunomodulatory effects, so as to provide some ideas for subsequent vaccine preparation and research.



Key wordsPLGA      Sustained release      Immunoregulation      Surface property     
Received: 20 November 2022      Published: 01 June 2023
ZTFLH:  Q819  
Cite this article:

ZHENG Rui, TU Ye-qing, WANG Hui, LUO De-yan. Research Progress of PLGA as Antigen Delivery System. China Biotechnology, 2023, 43(5): 69-75.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2211040     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I5/69

[1]   Butkovich N, Li E Y, Ramirez A, et al. Advancements in protein nanoparticle vaccine platforms to combat infectious disease. WIREs Nanomedicine and Nanobiotechnology, 2021, 13(3): e1681.
[2]   Zhang W F, Wang L Y, Liu Y, et al. Immune responses to vaccines involving a combined antigen-nanoparticle mixture and nanoparticle-encapsulated antigen formulation. Biomaterials, 2014, 35(23): 6086-6097.
doi: 10.1016/j.biomaterials.2014.04.022 pmid: 24780166
[3]   Del Giudice G, Rappuoli R, Didierlaurent A M. Correlates of adjuvanticity: a review on adjuvants in licensed vaccines. Seminars in Immunology, 2018, 39: 14-21.
doi: S1044-5323(18)30051-4 pmid: 29801750
[4]   Gregory A E, Titball R, Williamson D. Vaccine delivery using nanoparticles. Frontiers in Cellular and Infection Microbiology, 2013, 3: 13.
doi: 10.3389/fcimb.2013.00013 pmid: 23532930
[5]   Raponi A, Brewer J M, Garside P, et al. Nanoalum adjuvanted vaccines: small details make a big difference. Seminars in Immunology, 2021, 56: 101544.
doi: 10.1016/j.smim.2021.101544
[6]   de Groot A M, Du G S, Mönkäre J, et al. Hollow microneedle-mediated intradermal delivery of model vaccine antigen-loaded PLGA nanoparticles elicits protective T cell-mediated immunity to an intracellular bacterium. Journal of Controlled Release: Official Journal of the Controlled Release Society, 2017, 266: 27-35.
doi: 10.1016/j.jconrel.2017.09.017
[7]   Khan R A, Ahmed F, Afroz S, et al. Tetravalent formulation of polymeric nanoparticle-based vaccine induces a potent immune response against dengue virus. Biomaterials Science, 2022, 10(11): 2917-2928.
doi: 10.1039/D2BM00167E
[8]   Zhou X Y, Wang H Z, Luo Y, et al. Single-injection COVID-19 subunit vaccine elicits potent immune responses. Acta Biomaterialia, 2022, 151: 491-500.
doi: 10.1016/j.actbio.2022.08.006 pmid: 35948176
[9]   Radmehri M, Talebi A, Ameghi Roudsari A, et al. Comparative study on the efficacy of MF 59, ISA 70 VG, and nano-aluminum hydroxide adjuvants, alone and with nano-selenium on humoral immunity induced by a bivalent Newcastle+Avian influenza vaccine in chickens. Archives of Razi Institute, 2021, 76(5): 1213-1220.
doi: 10.22092/ari.2021.356666.1887 pmid: 35355760
[10]   Powell B S, Andrianov A K, Fusco P C. Polyionic vaccine adjuvants: another look at aluminum salts and polyelectrolytes. Clinical and Experimental Vaccine Research, 2015, 4(1): 23-45.
doi: 10.7774/cevr.2015.4.1.23 pmid: 25648619
[11]   Gherardi R K, Crépeaux G, Authier F J. Myalgia and chronic fatigue syndrome following immunization: macrophagic myofasciitis and animal studies support linkage to aluminum adjuvant persistency and diffusion in the immune system. Autoimmunity Reviews, 2019, 18(7): 691-705.
doi: S1568-9972(19)30109-0 pmid: 31059838
[12]   McKee A S, Marrack P. Old and new adjuvants. Current Opinion in Immunology, 2017, 47: 44-51.
doi: S0952-7915(16)30147-9 pmid: 28734174
[13]   Liu Q, Jia J L, Yang T Y, et al. Pathogen-mimicking polymeric nanoparticles based on dopamine polymerization as vaccines adjuvants induce robust humoral and cellular immune responses. Small (Weinheim an Der Bergstrasse, Germany), 2016, 12(13): 1744-1757.
doi: 10.1002/smll.v12.13
[14]   Priest N D, Newton D, Day J P, et al. Human metabolism of aluminium-26 and gallium-67 injected as citrates. Human & Experimental Toxicology, 1995, 14(3): 287-293.
[15]   Kawahara M, Kato-Negishi M. Link between aluminum and the pathogenesis of alzheimer’s disease: the integration of the aluminum and amyloid cascade hypotheses. International Journal of Alzheimer’s Disease, 2011, 2011: 276393.
[16]   Khan Z, Combadière C, Authier F J, et al. Slow CCL2-dependent translocation of biopersistent particles from muscle to brain. BMC Medicine, 2013, 11: 99.
doi: 10.1186/1741-7015-11-99 pmid: 23557144
[17]   Crépeaux G, Eidi H, David M O, et al. Highly delayed systemic translocation of aluminum-based adjuvant in CD1 mice following intramuscular injections. Journal of Inorganic Biochemistry, 2015, 152: 199-205.
doi: 10.1016/j.jinorgbio.2015.07.004 pmid: 26384437
[18]   Bolhassani A, Javanzad S, Saleh T, et al. Polymeric nanoparticles: potent vectors for vaccine delivery targeting cancer and infectious diseases. Human Vaccines & Immunotherapeutics, 2014, 10(2): 321-332.
[19]   Jin S E, Xia X, Huang J H, et al. Recent advances in PLGA-based biomaterials for bone tissue regeneration. Acta Biomaterialia, 2021, 127: 56-79.
doi: 10.1016/j.actbio.2021.03.067 pmid: 33831569
[20]   Danyuo Y, Oberaifo O E, Obayemi J D, et al. Extended pulsated drug release from PLGA-based minirods. Journal of Materials Science: Materials in Medicine, 2017, 28(4): 61.
doi: 10.1007/s10856-017-5866-y pmid: 28251469
[21]   Gu P F, Wusiman A, Zhang Y, et al. Rational design of PLGA nanoparticle vaccine delivery systems to improve immune responses. Molecular Pharmaceutics, 2019, 16(12): 5000-5012.
doi: 10.1021/acs.molpharmaceut.9b00860 pmid: 31621331
[22]   Anderson C F, Grimmett M E, Domalewski C J, et al. Inhalable nanotherapeutics to improve treatment efficacy for common lung diseases. WIREs Nanomedicine and Nanobiotechnology, 2020, 12(1): e1586.
[23]   Chen X M, Liu Y Y, Wang L Y, et al. Enhanced humoral and cell-mediated immune responses generated by cationic polymer-coated PLA microspheres with adsorbed HBsAg. Molecular Pharmaceutics, 2014, 11(6): 1772-1784.
doi: 10.1021/mp400597z pmid: 24738485
[24]   Morris W, Steinhoff M C, Russell P K. Potential of polymer microencapsulation technology for vaccine innovation. Vaccine, 1994, 12(1): 5-11.
pmid: 8303941
[25]   Preis I, Langer R S. A single-step immunization by sustained antigen release. Journal of Immunological Methods, 1979, 28(1-2): 193-197.
pmid: 469267
[26]   Bhardwaj P, Bhatia E, Sharma S, et al. Advancements in prophylactic and therapeutic nanovaccines. Acta Biomaterialia, 2020, 108: 1-21.
doi: S1742-7061(20)30161-6 pmid: 32268235
[27]   Gutjahr A, Phelip C, Coolen A L, et al. Biodegradable polymeric nanoparticles-based vaccine adjuvants for lymph nodes targeting. Vaccines, 2016, 4(4): 34.
doi: 10.3390/vaccines4040034
[28]   Hiremath J, Kang K I, Ming X, et al. Entrapment of H1N1 influenza virus derived conserved peptides in PLGA nanoparticles enhances T cell response and vaccine efficacy in pigs. PLoS One, 2016, 11(4): e0151922.
doi: 10.1371/journal.pone.0151922
[29]   Pati R, Shevtsov M, Sonawane A. Nanoparticle vaccines against infectious diseases. Frontiers in Immunology, 2018, 9: 2224.
doi: 10.3389/fimmu.2018.02224 pmid: 30337923
[30]   Ho N I, Huis In’t Veld L G M, Raaijmakers T K, et al. Adjuvants enhancing cross-presentation by dendritic cells: the key to more effective vaccines? Frontiers in Immunology, 2018, 9: 2874.
[31]   Kheirollahpour M, Mehrabi M, Dounighi N M, et al. Nanoparticles and vaccine development. Pharmaceutical Nanotechnology, 2020, 8(1): 6-21.
doi: 10.2174/2211738507666191024162042 pmid: 31647394
[32]   Zhao L, Seth A, Wibowo N, et al. Nanoparticle vaccines. Vaccine, 2014, 32(3): 327-337.
doi: 10.1016/j.vaccine.2013.11.069 pmid: 24295808
[33]   Muddineti O S, Omri A. Current trends in PLGA based long-acting injectable products: the industry perspective. Expert Opinion on Drug Delivery, 2022, 19(5): 559-576.
doi: 10.1080/17425247.2022.2075845
[34]   Han S L, Ma W Y, Jiang D W, et al. Intracellular signaling pathway in dendritic cells and antigen transport pathway in vivo mediated by an OVA@DDAB/PLGA nano-vaccine. Journal of Nanobiotechnology, 2021, 19(1): 394.
doi: 10.1186/s12951-021-01116-8
[35]   Cappellano G, Abreu H, Casale C, et al. Nano-microparticle platforms in developing next-generation vaccines. Vaccines, 2021, 9(6): 606.
doi: 10.3390/vaccines9060606
[36]   MacKerracher A, Sommershof A, Groettrup M. PLGA particle vaccination elicits resident memory CD8 T cells protecting from tumors and infection. European Journal of Pharmaceutical Sciences, 2022, 175: 106209.
doi: 10.1016/j.ejps.2022.106209
[37]   Lu X G, Miao L, Gao W T, et al. Engineered PLGA microparticles for long-term, pulsatile release of STING agonist for cancer immunotherapy. Science Translational Medicine, 2020, 12(556): eaaz6606.
doi: 10.1126/scitranslmed.aaz6606
[38]   McHugh K J, Nguyen T D, Linehan A R, et al. Fabrication of fillable microparticles and other complex 3D microstructures. Science, 2017, 357(6356): 1138-1142.
doi: 10.1126/science.aaf7447 pmid: 28912242
[39]   Guarecuco R, Lu J, McHugh K J, et al. Immunogenicity of pulsatile-release PLGA microspheres for single-injection vaccination. Vaccine, 2018, 36(22): 3161-3168.
doi: S0264-410X(17)30764-8 pmid: 28625520
[40]   Sadeghi I, Byrne J, Shakur R, et al. Engineered drug delivery devices to address Global Health challenges. Journal of Controlled Release: Official Journal of the Controlled Release Society, 2021, 331: 503-514.
doi: 10.1016/j.jconrel.2021.01.035
[41]   Cirelli K M, Carnathan D G, Nogal B, et al. Slow delivery immunization enhances HIV neutralizing antibody and germinal center responses via modulation of immunodominance. Cell, 2019, 177(5): 1153-1171.e28.
doi: S0092-8674(19)30398-8 pmid: 31080066
[42]   Xia Y F, Wu J, Du Y Q, et al. Bridging systemic immunity with gastrointestinal immune responses via oil-in-polymer capsules. Advanced Materials (Deerfield Beach, Fla), 2018, 30(31): e1801067.
[43]   Yu D H, Zhang Y Y, Zou G Y, et al. Influence of surface coatings of poly(d, l-lactide-co-glycolide) particles on HepG 2 cell behavior and particle fate. Biointerphases, 2014, 9(3): 031015.
doi: 10.1116/1.4894531
[44]   Cruz L J, Rosalia R A, Kleinovink J W, et al. Targeting nanoparticles to CD40, DEC-205 or CD11c molecules on dendritic cells for efficient CD8(+) T cell response: a comparative study. Journal of Controlled Release: Official Journal of the Controlled Release Society, 2014, 192: 209-218.
doi: 10.1016/j.jconrel.2014.07.040
[45]   Mintern J D, Percival C, Kamphuis M M J, et al. Targeting dendritic cells: the role of specific receptors in the internalization of polymer capsules. Advanced Healthcare Materials, 2013, 2(7): 940-944.
doi: 10.1002/adhm.201200441 pmid: 23335448
[46]   Joshi V B, Geary S M, Salem A K. Biodegradable particles as vaccine delivery systems: size matters. The AAPS Journal, 2013, 15(1): 85-94.
doi: 10.1208/s12248-012-9418-6
[47]   Zhao Z M, Ukidve A, Krishnan V, et al. Effect of physicochemical and surface properties on in vivo fate of drug nanocarriers. Advanced Drug Delivery Reviews, 2019, 143: 3-21.
doi: 10.1016/j.addr.2019.01.002
[48]   Beugeling M, Grasmeijer N, Born P A, et al. The mechanism behind the biphasic pulsatile drug release from physically mixed poly(dl-lactic (-co-glycolic) acid)-based compacts. International Journal of Pharmaceutics, 2018, 551(1-2): 195-202.
doi: S0378-5173(18)30676-8 pmid: 30223077
[49]   Ryu S, Park S, Lee H Y, et al. Biodegradable nanoparticles-loaded PLGA microcapsule for the enhanced encapsulation efficiency and controlled release of hydrophilic drug. International Journal of Molecular Sciences, 2021, 22(6): 2792.
doi: 10.3390/ijms22062792
[50]   Zhang J, Zheng Y J, Lee J, et al. A pulsatile release platform based on photo-induced imine-crosslinking hydrogel promotes scarless wound healing. Nature Communications, 2021, 12(1): 1-13.
doi: 10.1038/s41467-020-20314-w
[51]   Braz Gomes K, D’Souza B, Vijayanand S, et al. A dual-delivery platform for vaccination using antigen-loaded nanoparticles in dissolving microneedles. International Journal of Pharmaceutics, 2022, 613: 121393.
doi: 10.1016/j.ijpharm.2021.121393
[1] HU Wei,WU Jie,HIDEKI Nakanishi. Preparation of Oral Vaccine Carriers by Combining Morphology Control and Plating Modification[J]. China Biotechnology, 2022, 42(8): 40-51.
[2] XU Xiong-cheng,LUO Kai. Application of Laponite in Tissue Regeneration[J]. China Biotechnology, 2022, 42(12): 61-68.
[3] YAO Mei, CUI Ying, HU Jing, LI Jun-xia, WANG Yu. Repairing Larynx Cartilage Defects with Prefabricated PLAG Scaffold Compounded with BMSCs Cell Sheets Transfected by GDF5[J]. China Biotechnology, 2014, 34(3): 18-25.
[4] WU Yan-ge, SUN Xue-feng, YANG Lin, WANG Zheng. Effects of PLGA Degradation on Angiogenesis in vitro[J]. China Biotechnology, 2012, 32(07): 16-19.
[5] MA Lin-Xiang, CUI Ying, SHU Li-Meng, BO Xin-Yu, WANG Xue-Feng, ZHANG Ben. The Experimental Study of Repairing Laryngic Catilage Defect by Transplanting the Compound of Bone Mesenchymal Stem Cells and PLGA Porous Foam Scaffolds[J]. China Biotechnology, 2009, 29(12): 7-12.
[6] Chen-guang HE Yong-juan GAO Lei CUI Yi-lin CAO. Study on Influence of Copolymer Compositions of PLGA on Properties of Scaffolds[J]. China Biotechnology, 2008, 28(5): 22-28.