Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (4): 79-91    DOI: 10.13523/j.cb.2209080
    
Biological Characteristics and Application Potential of Human Amnion-derived Stem Cells
JING Jin-peng1,ZHU Chao-jun2,3,ZHANG Zhao-hui2,3,**()
1. Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
2. The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300250, China
3. Institute of TCM Ulcers, Tianjin University of Traditional Chinese Medicine, Tianjin 300250, China
Download: HTML   PDF(543KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Stem cell transplantation has been regarded as an attractive alternative therapy in medical research and clinical trials. It is confirmed by numerous experimental model studies that stem cell transplantation can repair damaged or degraded tissues and restore their function. However, immune rejection, ethical barriers and tumorigenicity are still the difficulties in the practical applications of stem cell therapy. In recent years, perinatal stem cells have been paid increasing attention by researchers as a potential source of cells to solve the above-mentioned problems. Compared with other stem cells, human amniotic stem cells (hAMSCs) show significant advantages in these aspects. Animal experiments have found that hAMSCs have high differentiation potential and immunomodulatory activity, demonstrating great potential for the treatment of gynecological diseases, neurological diseases, kidney diseases, lung diseases, skin diseases, diabetes, cancer and other diseases. At present, with the progress of science and to meet urgent clinical needs, the clinical application of hAMSCs has gradually broken through the limitations of traditional treatment. Many clinical studies have been registered to study the effectiveness and safety of hAMSCs, and some studies have been completed as planned, which has important guiding significance for clinical practice. Therefore, this article reviews the biological research progress and application potential of hAMSCs, in order to provide theoretical basis for experimental research and clinical application of hAMSCs.



Key wordsHuman amniotic-derived stem cell      Human amniotic epithelial stem cells      Human amnion-derived mesenchymal stem cells      Biological characteristics     
Received: 29 September 2022      Published: 04 May 2023
ZTFLH:  Q813  
Cite this article:

JING Jin-peng, ZHU Chao-jun, ZHANG Zhao-hui. Biological Characteristics and Application Potential of Human Amnion-derived Stem Cells. China Biotechnology, 2023, 43(4): 79-91.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2209080     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I4/79

hAMSCs 上皮标志物 间充质干细胞标志物 造血标志物 参考
文献
阳性 阳性 阴性
hAESCs Cytokeratin,E-cadherin CD29,CD166,CD90 CD34,CD45 [10]
CK19 CD29,CD44,CD73,CD90,CD105 CD31,CD34,CD45,CD49d [11]
CD73,CD29 CD34,CD45 [12]
CK7,E-cadherin CD29,CD73,CD105 CD34,CD45 [13]
E-cadherin,CD49f,CK7,EpCAM CD44,CD90,CD105,CD146,PDGFR-b,CD29 CD45 [14]
hAD-MSCs - CD29,CD44,CD73,CD90,CD105 CD34,CD45 [15]
- CD44,CD90,CD73,CD105 CD34,CD45,CD14,CD19,HLA-DR [16]
- CD29,CD73,CD90,CD105 CD34,CD45,CD133 [17]
- CD29,CD44,CD49,CD73,CD90,
CD105
CD31,CD34,CD45 [11]
- CD105,CD117 CD34 [18]
Table 1 Surface markers of hAMSCs
疾病 生物学功能
妇科疾病:POF[41,48,71]、IUA[45-46,73]、卵巢功能不全[74]、年龄相关性卵巢储备功能低下[75] 抑制 GC 凋亡;促进血管生成;促进子宫内膜增殖和修复;改善子宫内膜微环境;增加卵泡数量,提高卵母细胞质量
神经系统疾病:AD[76?-78]、中风[79?-81],SCI[82-83]、围产期脑损伤[84-85]、PD[44] 促进轴突再生和血管生成;调节炎症因子的释放以抑制神经炎症;免疫调节脑小胶质细胞以改善炎症;抑制细胞凋亡和星形胶质细胞的增生;分泌神经营养因子以保护神经;改善氧化应激反应
肾脏疾病:慢性肾病[16]、肾衰竭[86]、急性肾损伤[87] 调节肾脏局部免疫应答,降低 IL-6 表达;促进肾细胞再生;减轻肾缺血再灌注损伤
肺部疾病:PF[89??-92]、支气管肺发育不良[15] 改善高氧诱导的新生儿肺损伤;促进肺损伤修复;抑制纤维化途径;通过抑制 B 细胞反应等途径来调节炎症反应
肝脏疾病:肝纤维化[47,94]、肝硬化[58,95] 调节炎症反应;抑制星形胶质细胞的激活;抑制氧化应激
糖尿病及糖尿病创面:DM[96]、糖尿病创面[97-98] 抑制炎症反应;促进胰岛的血运重建并提升胰岛逆转高血糖的能力;促进内皮细胞的迁移、增殖和血管形成,促进创面再上皮化和肉芽组织形成;促进 M2 表型巨噬细胞的极化
癌症:胰腺导管腺癌[60]、肝细胞癌[17]、结肠癌[99]、前列腺癌[100] 通过促进细胞凋亡和抑制细胞增殖来延缓肿瘤的生长和侵袭;导致系统性和脾脏细胞毒性 T 细胞数量增加,并诱导交叉保护性细胞毒性反应;改善肿瘤微环境,抑制炎症反应
皮肤疾病:皮肤损伤[101?-103] 抑制细胞凋亡和促进皮肤细胞增殖;增强角质形成细胞的迁移和分化
肠道疾病:CD[105]、放射性直肠炎[106] 抑制单核细胞/巨噬细胞和 T 细胞的浸润;抑制促炎因子的释放
急性移植物抗宿主病[108] 调节细胞因子和趋化因子的分泌
硬化性胆管炎[109] 抑制胆道增生、胆周纤维化和炎症反应
多发性硬化症[110] 抑制中枢神经系统 CD3+T细胞和 F4/80+单核细胞/巨噬细胞的浸润
Table 2 Biological effects of hAMSCs in various diseases
[1]   Mathew S A, Naik C, Cahill P A, et al. Placental mesenchymal stromal cells as an alternative tool for therapeutic angiogenesis. Cellular and Molecular Life Sciences, 2020, 77(2): 253-265.
doi: 10.1007/s00018-019-03268-1 pmid: 31468060
[2]   Miki T. Stem cell characteristics and the therapeutic potential of amniotic epithelial cells. American Journal of Reproductive Immunology, 2018, 80(4): e13003.
[3]   Ansari A, Denton K M, Lim R. Strategies for immortalisation of amnion-derived mesenchymal and epithelial cells. Cell Biology International, 2022, 46(12): 1999-2008.
doi: 10.1002/cbin.11892 pmid: 35998259
[4]   Muttini A, Barboni B, Valbonetti L, et al. Amniotic epithelial stem cells: salient features and possible therapeutic role. Sports Medicine and Arthroscopy Review, 2018, 26(2): 70-74.
doi: 10.1097/JSA.0000000000000189 pmid: 29722767
[5]   Borem R, Madeline A, Bowman M, et al. Differential effector response of amnion- and adipose-derived mesenchymal stem cells to inflammation; implications for intradiscal therapy. Journal of Orthopaedic Research, 2019, 37(11): 2445-2456.
doi: 10.1002/jor.24412 pmid: 31287173
[6]   Abbasi-Kangevari M, Ghamari S H, Safaeinejad F, et al. Potential therapeutic features of human amniotic mesenchymal stem cells in multiple sclerosis: immunomodulation, inflammation suppression, angiogenesis promotion, oxidative stress inhibition, neurogenesis induction, MMPs regulation, and remyelination stimulation. Frontiers in Immunology, 2019, 10: 238.
doi: 10.3389/fimmu.2019.00238 pmid: 30842772
[7]   Miki T, Strom S C. Amnion-derived pluripotent/multipotent stem cells. Stem Cell Reviews, 2006, 2(2): 133-142.
doi: 10.1007/s12015-006-0020-0
[8]   Topoluk N, Hawkins R, Tokish J, et al. Amniotic mesenchymal stromal cells exhibit preferential osteogenic and chondrogenic differentiation and enhanced matrix production compared with adipose mesenchymal stromal cells. The American Journal of Sports Medicine, 2017, 45(11): 2637-2646.
doi: 10.1177/0363546517706138 pmid: 28541092
[9]   Koike N, Sugimoto J, Okabe M, et al. Distribution of amniotic stem cells in human term amnion membrane. Microscopy, 2022, 71(1): 66-76.
doi: 10.1093/jmicro/dfab035
[10]   Yang P J, Yuan W X, Liu J, et al. Biological characterization of human amniotic epithelial cells in a serum-free system and their safety evaluation. Acta Pharmacologica Sinica, 2018, 39(8): 1305-1316.
doi: 10.1038/aps.2018.22
[11]   Wu Q Q, Fang T, Lang H X, et al. Comparison of the proliferation, migration and angiogenic properties of human amniotic epithelial and mesenchymal stem cells and their effects on endothelial cells. International Journal of Molecular Medicine, 2017, 39(4): 918-926.
doi: 10.3892/ijmm.2017.2897 pmid: 28259958
[12]   Koike C, Zhou K X, Takeda Y, et al. Characterization of amniotic stem cells. Cellular Reprogramming, 2014, 16(4): 298-305.
doi: 10.1089/cell.2013.0090 pmid: 25068631
[13]   Liu Q W, Liu Q Y, Li J Y, et al. Therapeutic efficiency of human amniotic epithelial stem cell-derived functional hepatocyte-like cells in mice with acute hepatic failure. Stem Cell Research & Therapy, 2018, 9(1): 321.
[14]   Pratama G, Vaghjiani V, Tee J Y, et al. Changes in culture expanded human amniotic epithelial cells: implications for potential therapeutic applications. PLoS One, 2011, 6(11): e26136.
[15]   Li Z H, Gong X C, Li D, et al. Intratracheal transplantation of amnion-derived mesenchymal stem cells ameliorates hyperoxia-induced neonatal hyperoxic lung injury via aminoacyl-peptide hydrolase. International Journal of Stem Cells, 2020, 13(2): 221-236.
doi: 10.15283/ijsc19110 pmid: 32323511
[16]   Akan E, Cetinkaya B, Kipmen-Korgun D, et al. Effects of amnion derived mesenchymal stem cells on fibrosis in a 5/ 6 nephrectomy model in rats. Biotechnic & Histochemistry, 2021, 96(8): 594-607.
[17]   Liu Q W, Li J Y, Zhang X C, et al. Human amniotic mesenchymal stem cells inhibit hepatocellular carcinoma in tumour-bearing mice. Journal of Cellular and Molecular Medicine, 2020, 24(18): 10525-10541.
doi: 10.1111/jcmm.v24.18
[18]   Borghesi J, Ferreira Lima M, Mario L C, et al. Canine amniotic membrane mesenchymal stromal/stem cells: isolation, characterization and differentiation. Tissue and Cell, 2019, 58: 99-106.
doi: S0040-8166(19)30054-0 pmid: 31133253
[19]   Zhang D, Yan K, Zhou J, et al. Myogenic differentiation of human amniotic mesenchymal cells and its tissue repair capacity on volumetric muscle loss. Journal of Tissue Engineering, 2019, 10: 2041731419887100.
[20]   Li Y W, Liu Z M, Jin Y, et al. Differentiation of human amniotic mesenchymal stem cells into human anterior cruciate ligament fibroblast cells by in vitro coculture. BioMed Research International, 2017, 2017: 7360354.
[21]   Kharat A, Chandravanshi B, Gadre S, et al. IGF-1 and somatocrinin trigger islet differentiation in human amniotic membrane derived mesenchymal stem cells. Life Sciences, 2019, 216: 287-294.
doi: S0024-3205(18)30733-1 pmid: 30444986
[22]   Kuang W, Liu T, He F, et al. Icariside II promotes the differentiation of human amniotic mesenchymal stem cells into dopaminergic neuron-like cells. In vitro Cellular & Developmental Biology - Animal, 2021, 57(4): 457-467.
[23]   Markmee R, Aungsuchawan S, Tancharoen W, et al. Differentiation of cardiomyocyte-like cells from human amniotic fluid mesenchymal stem cells by combined induction with human platelet lysate and 5-azacytidine. Heliyon, 2020, 6(9): e04844.
[24]   Tancharoen W, Aungsuchawan S, Markmee R, et al. The effects of human platelet lysate versus commercial endothelial growth medium on the endothelial differentiation potential of human amniotic fluid mesenchymal stem cells. Heliyon, 2020, 6(9): e04873.
[25]   Li J Y, Qiu C, Wei Y, et al. Human amniotic epithelial stem cell-derived retinal pigment epithelium cells repair retinal degeneration. Frontiers in Cell and Developmental Biology, 2021, 9: 737242.
[26]   Michalik M, Wieczorek P, Czekaj P. In vitro differentiation of human amniotic epithelial cells into hepatocyte-like cells. Cells, 2022, 11(14): 2138.
doi: 10.3390/cells11142138
[27]   Zhou Q, Liu X Y, Ruan Y X, et al. Construction of corneal epithelium with human amniotic epithelial cells and repair of limbal deficiency in rabbit models. Human Cell, 2015, 28(1): 22-36.
doi: 10.1007/s13577-014-0099-6 pmid: 25134797
[28]   Serra M, Marongiu M, Contini A, et al. Evidence of amniotic epithelial cell differentiation toward hepatic sinusoidal endothelial cells. Cell Transplantation, 2018, 27(1): 23-30.
doi: 10.1177/0963689717727541 pmid: 29562778
[29]   Yoshida Y, Takagi T, Kuramoto Y, et al. Intravenous administration of human amniotic mesenchymal stem cells in the subacute phase of cerebral infarction in a mouse model ameliorates neurological disturbance by suppressing blood brain barrier disruption and apoptosis via immunomodulation. Cell Transplantation, 2021, 30: 9636897211024183.
[30]   Hua D X, Ju Z, Gan X J, et al. Human amniotic mesenchymal stromal cells alleviate acute liver injury by inhibiting the pro-inflammatory response of liver resident macrophage through autophagy. Annals of Translational Medicine, 2019, 7(16): 392.
doi: 10.21037/atm.2019.08.83 pmid: 31555706
[31]   Pampalone M, Corrao S, Amico G, et al. Human amnion-derived mesenchymal stromal cells in cirrhotic patients with refractory ascites: a possible anti-inflammatory therapy for preventing spontaneous bacterial peritonitis. Stem Cell Reviews and Reports, 2021, 17(3): 981-998.
doi: 10.1007/s12015-020-10104-8 pmid: 33389680
[32]   Rossi D, Pianta S, Magatti M, et al. Characterization of the conditioned medium from amniotic membrane cells: prostaglandins as key effectors of its immunomodulatory activity. PLoS One, 2012, 7(10): e46956.
[33]   Gao Y, Li W R, Bu X Y, et al. Human amniotic mesenchymal stem cells inhibit aGVHD by regulating balance of Treg and T effector cells. Journal of Inflammation Research, 2021, 14: 3985-3999.
doi: 10.2147/JIR.S323054 pmid: 34429630
[34]   Wang F, Yao G P, Pan S S, et al. TIPE2-modified human amnion-derived mesenchymal stem cells promote the efficacy of allogeneic heart transplantation through inducing immune tolerance. Journal of Thoracic Disease, 2021, 13(8): 5064-5076.
doi: 10.21037/jtd-21-1034 pmid: 34527344
[35]   Tan J L, Chan S T, Wallace E M, et al. Human amnion epithelial cells mediate lung repair by directly modulating macrophage recruitment and polarization. Cell Transplantation, 2014, 23(3): 319-328.
doi: 10.3727/096368912X661409 pmid: 23294809
[36]   Li J L, Koike-Soko C, Sugimoto J, et al. Human amnion-derived stem cells have immunosuppressive properties on NK cells and monocytes. Cell Transplantation, 2015, 24(10): 2065-2076.
doi: 10.3727/096368914X685230 pmid: 25333453
[37]   Motedayyen H, Rezaei A, Zarnani A H, et al. Human amniotic epithelial cells inhibit activation and pro-inflammatory cytokines production of naive CD4+ T cells from women with unexplained recurrent spontaneous abortion. Reproductive Biology, 2018, 18(2): 182-188.
doi: S1642-431X(18)30097-4 pmid: 29729842
[38]   Wassmer C H, Berishvili E. Immunomodulatory properties of amniotic membrane derivatives and their potential in regenerative medicine. Current Diabetes Reports, 2020, 20(8): 31.
doi: 10.1007/s11892-020-01316-w
[39]   Lebreton F, Hanna R, Wassmer C H, et al. Mechanisms of immunomodulation and cytoprotection conferred to pancreatic islet by human amniotic epithelial cells. Stem Cell Reviews and Reports, 2022, 18(1): 346-359.
doi: 10.1007/s12015-021-10269-w
[40]   Magatti M, Caruso M, De Munari S, et al. Human amniotic membrane-derived mesenchymal and epithelial cells exert different effects on monocyte-derived dendritic cell differentiation and function. Cell Transplantation, 2015, 24(9): 1733-1752.
doi: 10.3727/096368914X684033 pmid: 25259480
[41]   Ling L, Feng X S, Wei T Q, et al. Human amnion-derived mesenchymal stem cell (hAD-MSC) transplantation improves ovarian function in rats with premature ovarian insufficiency (POI) at least partly through a paracrine mechanism. Stem Cell Research & Therapy, 2019, 10(1): 46.
[42]   Nigro A L, Gallo A, Bulati M, et al. Amnion-derived mesenchymal stromal/stem cell paracrine signals potentiate human liver organoid differentiation: translational implications for liver regeneration. Frontiers in Medicine, 2021, 8: 746298.
[43]   Chu Y J, Chen W P, Peng W, et al. Amnion-derived mesenchymal stem cell exosomes-mediated autophagy promotes the survival of trophoblasts under hypoxia through mTOR pathway by the downregulation of EZH2. Frontiers in Cell and Developmental Biology, 2020, 8: 545852.
[44]   Zhang J F, Li H, Yang H, et al. Human amniotic epithelial cells alleviate a mouse model of parkinson’s disease mainly by neuroprotective, anti-oxidative and anti-inflammatory factors. Journal of Neuroimmune Pharmacology, 2021, 16(3): 620-633.
doi: 10.1007/s11481-020-09969-w
[45]   Bai X C, Liu J, Yuan W X, et al. Therapeutic effect of human amniotic epithelial cells in rat models of intrauterine adhesions. Cell Transplantation, 2020, 29: 963689720908495.
[46]   Ouyang X L, You S, Zhang Y L, et al. Transplantation of human amnion epithelial cells improves endometrial regeneration in rat model of intrauterine adhesions. Stem Cells and Development, 2020, 29(20): 1346-1362.
doi: 10.1089/scd.2019.0246
[47]   Kuk N, Hodge A, Sun Y, et al. Human amnion epithelial cells and their soluble factors reduce liver fibrosis in murine non-alcoholic steatohepatitis. Journal of Gastroenterology and Hepatology, 2019, 34(8): 1441-1449.
doi: 10.1111/jgh.14643 pmid: 30821873
[48]   Zhang Q W, Bu S X, Sun J Y, et al. Paracrine effects of human amniotic epithelial cells protect against chemotherapy-induced ovarian damage. Stem Cell Research & Therapy, 2017, 8(1): 270.
[49]   Wei P, Zhong C J, Yang X L, et al. Exosomes derived from human amniotic epithelial cells accelerate diabetic wound healing via PI3K-AKT-mTOR-mediated promotion in angiogenesis and fibroblast function. Burns & Trauma, 2020, 8: tkaa020.
[50]   Wang X Y, Guan X H, Yu Z P, et al. Human amniotic stem cells-derived exosmal miR-181a-5p and miR-199a inhibit melanogenesis and promote melanosome degradation in skin hyperpigmentation, respectively. Stem Cell Research & Therapy, 2021, 12(1): 501.
[51]   Zhao B, Zhang Y J, Han S C, et al. Exosomes derived from human amniotic epithelial cells accelerate wound healing and inhibit scar formation. Journal of Molecular Histology, 2017, 48(2): 121-132.
doi: 10.1007/s10735-017-9711-x pmid: 28229263
[52]   Zhang Q W, Sun J Y, Huang Y T, et al. Human amniotic epithelial cell-derived exosomes restore ovarian function by transferring microRNAs against apoptosis. Molecular Therapy - Nucleic Acids, 2019, 16: 407-418.
doi: 10.1016/j.omtn.2019.03.008
[53]   Qiu C, Ge Z, Cui W Y, et al. Human amniotic epithelial stem cells: a promising seed cell for clinical applications. International Journal of Molecular Sciences, 2020, 21(20): 7730.
doi: 10.3390/ijms21207730
[54]   Rylova Y V, Milovanova N V, Gordeeva M N, et al. Characteristics of multipotent mesenchymal stromal cells from human terminal placenta. Bulletin of Experimental Biology and Medicine, 2015, 159(2): 253-257.
doi: 10.1007/s10517-015-2935-4 pmid: 26085360
[55]   Srinivasan R C, Strom S C, Gramignoli R. Effects of cryogenic storage on human amnion epithelial cells. Cells, 2020, 9(7): 1696.
doi: 10.3390/cells9071696
[56]   Banas R A, Trumpower C, Bentlejewski C, et al. Immunogenicity and immunomodulatory effects of amnion-derived multipotent progenitor cells. Human Immunology, 2008, 69(6): 321-328.
doi: 10.1016/j.humimm.2008.04.007 pmid: 18571002
[57]   Strom S C, Gramignoli R. Human amnion epithelial cells expressing HLA-G as novel cell-based treatment for liver disease. Human Immunology, 2016, 77(9): 734-739.
doi: 10.1016/j.humimm.2016.07.002 pmid: 27476049
[58]   Lin J S, Zhou L, Sagayaraj A, et al. Hepatic differentiation of human amniotic epithelial cells and in vivo therapeutic effect on animal model of cirrhosis. Journal of Gastroenterology and Hepatology, 2015, 30(11): 1673-1682.
doi: 10.1111/jgh.12991
[59]   Qin L J, Zhang J, Xiao Y J, et al. A novel long-term intravenous combined with local treatment with human amnion-derived mesenchymal stem cells for a multidisciplinary rescued uremic calciphylaxis patient and the underlying mechanism. Journal of Molecular Cell Biology, 2022, 14(2): mjac010.
doi: 10.1093/jmcb/mjac010
[60]   Chen Y C, Lan Y W, Huang S M, et al. Human amniotic fluid mesenchymal stem cells attenuate pancreatic cancer cell proliferation and tumor growth in an orthotopic xenograft mouse model. Stem Cell Research & Therapy, 2022, 13(1): 235.
[61]   Xiang E, Han B, Zhang Q, et al. Human umbilical cord-derived mesenchymal stem cells prevent the progression of early diabetic nephropathy through inhibiting inflammation and fibrosis. Stem Cell Research & Therapy, 2020, 11(1): 336.
[62]   Yang J Y, Chen Z Y, Pan D Y, et al. Umbilical cord-derived mesenchymal stem cell-derived exosomes combined pluronic F127 hydrogel promote chronic diabetic wound healing and complete skin regeneration. International Journal of Nanomedicine, 2020, 15: 5911-5926.
doi: 10.2147/IJN.S249129 pmid: 32848396
[63]   Li D L, Zhang J X, Liu Z J, et al. Human umbilical cord mesenchymal stem cell-derived exosomal miR-27b attenuates subretinal fibrosis via suppressing epithelial-mesenchymal transition by targeting HOXC6. Stem Cell Research & Therapy, 2021, 12(1): 24.
[64]   Lu X Y, Cui J J, Cui L L, et al. The effects of human umbilical cord-derived mesenchymal stem cell transplantation on endometrial receptivity are associated with Th1/Th 2 balance change and uNK cell expression of uterine in autoimmune premature ovarian failure mice. Stem Cell Research & Therapy, 2019, 10(1): 214.
[65]   Yin N, Wu C T, Qiu J P, et al. Protective properties of heme oxygenase-1 expressed in umbilical cord mesenchymal stem cells help restore the ovarian function of premature ovarian failure mice through activating the JNK/Bcl-2 signal pathway-regulated autophagy and upregulating the circulating of CD8+ CD28- T cells. Stem Cell Research & Therapy, 2020, 11(1): 49.
[66]   Hendrijantini N, Hartono P. Phenotype characteristics and osteogenic differentiation potential of human mesenchymal stem cells derived from amnion membrane (HAMSCs) and umbilical cord (HUC-MSCs). Acta Informatica Medica, 2019, 27(2): 72-77.
doi: 10.5455/aim.2019.27.72-77 pmid: 31452562
[67]   Asgari H R, Akbari M, Yazdekhasti H, et al. Comparison of human amniotic, chorionic, and umbilical cord multipotent mesenchymal stem cells regarding their capacity for differentiation toward female germ cells. Cellular Reprogramming, 2017, 19(1): 44-53.
doi: 10.1089/cell.2016.0035 pmid: 28112985
[68]   Ertl J, Pichlsberger M, Tuca A C, et al. Comparative study of regenerative effects of mesenchymal stem cells derived from placental amnion, chorion and umbilical cord on dermal wounds. Placenta, 2018, 65: 37-46.
doi: S0143-4004(18)30144-9 pmid: 29908640
[69]   Dabrowski F A, Burdzinska A, Kulesza A, et al. Mesenchymal stem cells from human amniotic membrane and umbilical cord can diminish immunological response in an in vitro allograft model. Gynecologic and Obstetric Investigation, 2017, 82(3): 267-275.
doi: 10.1159/000449199 pmid: 27627653
[70]   Lim Y M, Jeong K, Lee S R, et al. Association between premature ovarian insufficiency, early menopause, socioeconomic status in a nationally representative sample from Korea. Maturitas, 2019, 121: 22-27.
doi: 10.1016/j.maturitas.2018.12.004
[71]   Ling L, Hou J Y, Liu D D, et al. Important role of the SDF-1/CXCR4 axis in the homing of systemically transplanted human amnion-derived mesenchymal stem cells (hAD-MSCs) to ovaries in rats with chemotherapy-induced premature ovarian insufficiency (POI). Stem Cell Research & Therapy, 2022, 13(1): 79.
[72]   Dreisler E, Kjer J J. Asherman’s syndrome: current perspectives on diagnosis and management. International Journal of Women’s Health, 2019, 11: 191-198.
[73]   Yu J, Zhang W W, Huang J Y, et al. Management of intrauterine adhesions using human amniotic mesenchymal stromal cells to promote endometrial regeneration and repair through notch signalling. Journal of Cellular and Molecular Medicine, 2021, 25(23): 11002-11015.
doi: 10.1111/jcmm.17023 pmid: 34724320
[74]   Liu H W, Jiang C Y, La B Y, et al. Human amnion-derived mesenchymal stem cells improved the reproductive function of age-related diminished ovarian reserve in mice through Ampk/FoxO3a signaling pathway. Stem Cell Research & Therapy, 2021, 12(1): 317.
[75]   Feng X S, Ling L, Zhang W Q, et al. Effects of human amnion-derived mesenchymal stem cell (hAD-MSC) transplantation in situ on primary ovarian insufficiency in SD rats. Reproductive Sciences (Thousand Oaks, Calif), 2020, 27(7): 1502-1512.
[76]   Kim K Y, Suh Y H, Chang K A. Therapeutic effects of human amniotic epithelial stem cells in a transgenic mouse model of Alzheimer’s disease. International Journal of Molecular Sciences, 2020, 21(7): 2658.
doi: 10.3390/ijms21072658
[77]   Jiao H L, Shi K, Zhang W J, et al. Therapeutic potential of human amniotic membrane-derived mesenchymal stem cells in APP transgenic mice. Oncology Letters, 2016, 12(3): 1877-1883.
pmid: 27588134
[78]   Ferdousi F, Kondo S, Sasaki K, et al. Microarray analysis of verbenalin-treated human amniotic epithelial cells reveals therapeutic potential for Alzheimer’s disease. Aging, 2020, 12(6): 5516-5538.
doi: 10.18632/aging.v12i6
[79]   Nazarinia D, Aboutaleb N, Gholamzadeh R, et al. Conditioned medium obtained from human amniotic mesenchymal stem cells attenuates focal cerebral ischemia/reperfusion injury in rats by targeting mTOR pathway. Journal of Chemical Neuroanatomy, 2019, 102: 101707.
[80]   Tao J, Ji F, Liu B J, et al. Improvement of deficits by transplantation of lentiviral vector-modified human amniotic mesenchymal cells after cerebral ischemia in rats. Brain Research, 2012, 1448: 1-10.
doi: 10.1016/j.brainres.2012.01.069 pmid: 22386515
[81]   Kuramoto Y, Fujita M, Takagi T, et al. Early-phase administration of human amnion-derived stem cells ameliorates neurobehavioral deficits of intracerebral hemorrhage by suppressing local inflammation and apoptosis. Journal of Neuroinflammation, 2022, 19(1): 48.
doi: 10.1186/s12974-022-02411-3 pmid: 35151317
[82]   Takamiya S, Kawabori M, Yamazaki K, et al. Intravenous transplantation of amnion-derived mesenchymal stem cells promotes functional recovery and alleviates intestinal dysfunction after spinal cord injury. PLoS One, 2022, 17(7): e0270606.
[83]   Zhou H L, Fang H, Luo H T, et al. Intravenous administration of human amniotic mesenchymal stem cells improves outcomes in rats with acute traumatic spinal cord injury. Neuroreport, 2020, 31(10): 730-736.
doi: 10.1097/WNR.0000000000001473
[84]   Leaw B, Zhu D D, Tan J, et al. Human amnion epithelial cells rescue cell death via immunomodulation of microglia in a mouse model of perinatal brain injury. Stem Cell Research & Therapy, 2017, 8(1): 46.
[85]   Yawno T, Sabaretnam T, Li J G, et al. Human amnion epithelial cells protect against white matter brain injury after repeated endotoxin exposure in the preterm ovine fetus. Cell Transplantation, 2017, 26(4): 541-553.
doi: 10.3727/096368916X693572 pmid: 27938480
[86]   Cetinkaya B, Unek G, Kipmen-Korgun D, et al. Effects of human placental amnion derived mesenchymal stem cells on proliferation and apoptosis mechanisms in chronic kidney disease in the rat. International Journal of Stem Cells, 2019, 12(1): 151-161.
doi: 10.15283/ijsc18067 pmid: 30595007
[87]   Ren Y F, Chen Y, Zheng X Z, et al. Human amniotic epithelial cells ameliorate kidney damage in ischemia-reperfusion mouse model of acute kidney injury. Stem Cell Research & Therapy, 2020, 11(1): 410.
[88]   Lv X X, Li K, Hu Z W. Autophagy and pulmonary fibrosis. Autophagy:Biology and Diseases. Singapore: Springer Singapore, 2020: 569-579.
[89]   Cui P, Xin H M, Yao Y M, et al. Human amnion-derived mesenchymal stem cells alleviate lung injury induced by white smoke inhalation in rats. Stem Cell Research & Therapy, 2018, 9(1): 101.
[90]   Anna C, Pietro R, Patrizia B S, et al. Amniotic MSCs reduce pulmonary fibrosis by hampering lung B-cell recruitment, retention, and maturation. Stem Cells Translational Medicine, 2020, 9(9): 1023-1035.
doi: 10.1002/sctm.20-0068 pmid: 32452646
[91]   Tan J L, Lau S N, Leaw B, et al. Amnion epithelial cell-derived exosomes restrict lung injury and enhance endogenous lung repair. Stem Cells Translational Medicine, 2018, 7(2): 180-196.
doi: 10.1002/sctm.17-0185 pmid: 29297621
[92]   Royce S G, Patel K P, Mao W Y, et al. Serelaxin enhances the therapeutic effects of human amnion epithelial cell-derived exosomes in experimental models of lung disease. British Journal of Pharmacology, 2019, 176(13): 2195-2208.
doi: 10.1111/bph.14666 pmid: 30883698
[93]   Roehlen N, Crouchet E, Baumert T F. Liver fibrosis: mechanistic concepts and therapeutic perspectives. Cells, 2020, 9(4): 875.
doi: 10.3390/cells9040875
[94]   Hodge A, Andrewartha N, Lourensz D, et al. Human amnion epithelial cells produce soluble factors that enhance liver repair by reducing fibrosis while maintaining regeneration in a model of chronic liver injury. Cell Transplantation, 2020, 29: 963689720950221.
[95]   Pietrosi G, Fernández-Iglesias A, Pampalone M, et al. Human amniotic stem cells improve hepatic microvascular dysfunction and portal hypertension in cirrhotic rats. Liver International, 2020, 40(10): 2500-2514.
doi: 10.1111/liv.14610 pmid: 32996708
[96]   Lebreton F, Bellofatto K, Wassmer C H, et al. Shielding islets with human amniotic epithelial cells enhances islet engraftment and revascularization in a murine diabetes model. American Journal of Transplantation, 2020, 20(6): 1551-1561.
doi: 10.1111/ajt.15812 pmid: 32031745
[97]   Shu F T, Gao H J, Wu W F, et al. Amniotic epithelial cells accelerate diabetic wound healing by protecting keratinocytes and fibroblasts from high-glucose-induced senescence. Cell Biology International, 2022, 46(5): 755-770.
doi: 10.1002/cbin.v46.5
[98]   Zheng Y J, Zheng S Q, Fan X M, et al. Amniotic epithelial cells accelerate diabetic wound healing by modulating inflammation and promoting neovascularization. Stem Cells International, 2018, 2018: 1082076.
[99]   Tabatabaei M, Mosaffa N, Ghods R, et al. Vaccination with human amniotic epithelial cells confer effective protection in a murine model of Colon adenocarcinoma. International Journal of Cancer, 2018, 142(7): 1453-1466.
doi: 10.1002/ijc.31159 pmid: 29139122
[100]   Rolfo A, Giuffrida D, Giuffrida M C, et al. New perspectives for prostate cancer treatment: in vitro inhibition of LNCaP and PC 3 cell proliferation by amnion-derived mesenchymal stromal cells conditioned media. The Aging Male, 2014, 17(2): 94-101.
doi: 10.3109/13685538.2014.896894
[101]   He D, Zhao F, Jiang H, et al. LOXL2 from human amniotic mesenchymal stem cells accelerates wound epithelialization by promoting differentiation and migration of keratinocytes. Aging, 2020, 12(13): 12960-12986.
doi: 10.18632/aging.v12i13
[102]   Li J Y, Ren K K, Zhang W J, et al. Human amniotic mesenchymal stem cells and their paracrine factors promote wound healing by inhibiting heat stress-induced skin cell apoptosis and enhancing their proliferation through activating PI3K/AKT signaling pathway. Stem Cell Research & Therapy, 2019, 10(1): 247.
[103]   Ochiai D, Abe Y, Fukutake M, et al. Cell sheets using human amniotic fluid stem cells reduce tissue fibrosis in murine full-thickness skin wounds. Tissue and Cell, 2021, 68: 101472.
[104]   Petagna L, Antonelli A, Ganini C, et al. Pathophysiology of Crohn’s disease inflammation and recurrence. Biology Direct, 2020, 15(1): 23.
doi: 10.1186/s13062-020-00280-5 pmid: 33160400
[105]   Miyamoto S, Ohnishi S, Onishi R, et al. Therapeutic effects of human amnion-derived mesenchymal stem cell transplantation and conditioned medium enema in rats with trinitrobenzene sulfonic acid-induced colitis. American Journal of Translational Research, 2017, 9(3): 940-952.
pmid: 28386323
[106]   Ono M, Ohnishi S, Honda M, et al. Effects of human amnion-derived mesenchymal stromal cell transplantation in rats with radiation proctitis. Cytotherapy, 2015, 17(11): 1545-1559.
doi: 10.1016/j.jcyt.2015.07.003 pmid: 26256683
[107]   Thangavelu G, Du J, Paz K G, et al. Inhibition of inositol kinase B controls acute and chronic graft-versus-host disease. Blood, 2020, 135(1): 28-40.
doi: 10.1182/blood.2019000032 pmid: 31697815
[108]   Tago Y, Kobayashi C, Ogura M, et al. Human amnion-derived mesenchymal stem cells attenuate xenogeneic graft-versus-host disease by preventing T cell activation and proliferation. Scientific Reports, 2021, 11(1): 2406.
doi: 10.1038/s41598-021-81916-y pmid: 33510297
[109]   Sugiura R, Ohnishi S, Ohara M, et al. Effects of human amnion-derived mesenchymal stem cells and conditioned medium in rats with sclerosing cholangitis. American Journal of Translational Research, 2018, 10(7): 2102-2114.
pmid: 30093947
[110]   Liu Y H, Vaghjiani V, Tee J Y, et al. Amniotic epithelial cells from the human placenta potently suppress a mouse model of multiple sclerosis. PLoS One, 2012, 7(4): e35758.
[111]   Lim R, Malhotra A, Tan J, et al. First-in-human administration of allogeneic amnion cells in premature infants with bronchopulmonary dysplasia: a safety study. Stem Cells Translational Medicine, 2018, 7(9): 628-635.
doi: 10.1002/sctm.18-0079 pmid: 30078207
[112]   Malhotra A, Lim R, Mockler J C, et al. Two-year outcomes of infants enrolled in the first-in-human study of amnion cells for bronchopulmonary dysplasia. Stem Cells Translational Medicine, 2020, 9(3): 289-294.
doi: 10.1002/sctm.19-0251 pmid: 31774236
[113]   Lim R, Hodge A, Moore G, et al. A pilot study evaluating the safety of intravenously administered human amnion epithelial cells for the treatment of hepatic fibrosis. Frontiers in Pharmacology, 2017, 8: 549.
doi: 10.3389/fphar.2017.00549 pmid: 28878671
[1] WU Yue, SUN Bai-he, ZHAO Rui, LI Yan-fei, MA Lin-lin. Research Progress of Therapeutic Nanobodies with Different Routes of Administration[J]. China Biotechnology, 2023, 43(1): 59-70.
[2] GUO Guang-chao,ZHOU Yu-yong,CAO San-jie,WU Yao-min,WU Rui,ZHAO Qin,WEN Xin-tian,HUANG Xiao-bo,WEN Yi-ping. The Study on the Effect of NS2A-C60A Site Mutation of Japanese Encephalitis Virus on Its Biological Characteristics[J]. China Biotechnology, 2020, 40(9): 1-10.
[3] WANG Dian-liang. The Types and Biological Characteristics of Cell Drug[J]. China Biotechnology, 2016, 36(5): 138-144.
[4] XIN Yi, GONG Da, XI Xin, SHI Hong-tao, LIU Sa, XU Xiu-fang, LI Na, HUANG Yi-min. Combined Enzymatic Digestion Method and Explants Culture Method Used on Primary Culture and Biological Characteristic Identification of Pulmonary Artery Smooth Muscle Cells of mice[J]. China Biotechnology, 2013, 33(9): 10-16.
[5] ZHAO Yu-jiao, PAN Yue, YAN Ling-mei, YUE Yao-fei, YANG Li-juan, SUN Qiang-ming. Adaptability of Dengue-Ⅱ Virus D01090 Strain in KMB17 Cells and Its Preliminary Identification[J]. China Biotechnology, 2012, 32(11): 1-7.
[6] ZHAO Yu-jiao, PAN Yue, YAN Ling-mei, YUE Yao-fei, YANG Li-juan, SUN Qiang-ming. Adaptability of Dengue-Ⅱ Virus D01090 Strain in KMB17 Cells and Its Preliminary Identification[J]. China Biotechnology, 2012, 32(11): 1-7.
[7] HOU Xiao-Qiang Xian-Zhu XIA. Molecular Cloning, Prokaryotic Expression, and Biological Activity of α-2,6 Sialyltransferase[J]. China Biotechnology, 2009, 29(01): 17-22.