Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (4): 59-70    DOI: 10.13523/j.cb.2209064
    
Wnt/β-catenin Signal Pathway and Hepatocellular Carcinoma
YANG Tao-hua1,CHEN Guan-yuan1,CHEN Xu1,LI Qiang1,ZHANG Qing1,WU Yue-rui2,JIANG Jian-wei3,LI Zhen-dong1,*()
1. The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
2. Shunde Hospital Affiliated to Jinan University, Foshan 528306, China
3. School of Medicine, Jinan University, Guangzhou 510632, China
Download: HTML   PDF(1244KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

As a common human malignant tumor, the pathogenesis of hepatocellular carcinoma (HCC) has not been completely clarified. Wnt signaling pathway is related to a variety of pathophysiological processes in human body, among which the carcinogenesis and the development of HCC may be closely related to the classic Wnt/β-catenin signaling pathway. Wnt/β-catenin regulates HCC by expressing cancer-related genes, activating hepatic stellate cells, regulating liver stem cell behavior, and promoting the invasion and metastasis of cancer cells. The role of Wnt/β-catein signaling pathway in HCC is discussed.



Key wordsHepatocellular carcinoma (HCC)      Signal pathway      Wnt      β-Catenin     
Received: 23 September 2022      Published: 04 May 2023
ZTFLH:  R73Q257  
Cite this article:

YANG Tao-hua, CHEN Guan-yuan, CHEN Xu, LI Qiang, ZHANG Qing, WU Yue-rui, JIANG Jian-wei, LI Zhen-dong. Wnt/β-catenin Signal Pathway and Hepatocellular Carcinoma. China Biotechnology, 2023, 43(4): 59-70.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2209064     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I4/59

Fig.1 Overview of Wnt/β-catenin signaling
Fig.2 Relationship between Wnt/β-catenin and hippo pathway
Fig.3 Relationship between Wnt/β-catenin and notch pathway
Fig.4 Relationship between Wnt/β-catenin and hedgehog pathway
Fig.5 Wnt/β-catenin and other pathways
[1]   曹毛毛, 李贺, 孙殿钦, 等. 全球肝癌2020年流行病学现状. 中华肿瘤防治杂志, 2022, 29(5): 322-328.
[1]   Cao M M, Li H, Sun D Q, et al. Global epidemiology of liver cancer in 2020. Chinese Journal of Cancer Prevention and Treatment, 2022, 29(5): 322-328.
[2]   国家卫生健康委员会办公厅. 原发性肝癌诊疗指南(2022年版). 中华外科杂志, 2022, 60(4): 81-105.
[2]   General Office of the National Health Commission. Guidelines for diagnosis and treatment of primary liver cancer (2022 edition). Chinese Journal of Surgery, 2022, 60(4): 81-105.
[3]   Zhang Y, Wang X. Targeting the Wnt/β-catenin signaling pathway in cancer. Journal of Hematology & Oncology, 2020, 13(1): 165.
[4]   Ling L, Nurcombe V, Cool S M. Wnt signaling controls the fate of mesenchymal stem cells. Gene, 2009, 433(1-2): 1-7.
doi: 10.1016/j.gene.2008.12.008 pmid: 19135507
[5]   Mazzotta S, Neves C, Bonner R, et al. Distinctive roles of canonical and noncanonical Wnt signaling in human embryonic cardiomyocyte development. Stem Cell Reports, 2016, 7(4): 764-776.
doi: S2213-6711(16)30175-8 pmid: 27641648
[6]   Nusse R, Clevers H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell, 2017, 169(6): 985-999.
doi: S0092-8674(17)30547-0 pmid: 28575679
[7]   倪彩菊, 覃小珊, 黄赞松. Wnt/β-catenin信号通路与肝癌发生发展的研究进展. 世界华人消化杂志, 2021, 29(4): 190-196.
doi: 10.11569/wcjd.v29.i4.190
[7]   Ni C J, Qin X S, Huang Z S. Role of Wnt/β-catenin signaling pathway in occurrence and development of hepatocellular carcinoma. World Chinese Journal of Digestology, 2021, 29(4): 190-196.
doi: 10.11569/wcjd.v29.i4.190
[8]   MacDonald B T, Tamai K, He X. Wnt/β-catenin signaling: components, mechanisms, and diseases. Developmental Cell, 2009, 17(1): 9-26.
doi: 10.1016/j.devcel.2009.06.016 pmid: 19619488
[9]   Cadigan K M. Wnt/β-catenin signaling: turning the switch. Developmental Cell, 2008, 14(3): 322-323.
doi: 10.1016/j.devcel.2008.02.006 pmid: 18331712
[10]   Bisso A, Filipuzzi M, Gamarra Figueroa G P, et al. Cooperation between MYC and β-catenin in liver tumorigenesis requires Yap/taz. Hepatology, 2020, 72(4): 1430-1443.
doi: 10.1002/hep.31120
[11]   Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer. Oncogene, 2017, 36(11): 1461-1473.
doi: 10.1038/onc.2016.304 pmid: 27617575
[12]   Wang W H, Smits R, Hao H P, et al. Wnt/β-catenin signaling in liver cancers. Cancers, 2019, 11(7): 926.
doi: 10.3390/cancers11070926
[13]   Li J P, Gong W L, Li X X, et al. Recent progress of Wnt pathway inhibitor dickkopf-1 in liver cancer. Journal of Nanoscience and Nanotechnology, 2018, 18(8): 5192-5206.
doi: 10.1166/jnn.2018.14636 pmid: 29458569
[14]   Li S, Lavrijsen M, Bakker A, et al. Commonly observed RNF 43 mutations retain functionality in attenuating Wnt/β-catenin signaling and unlikely confer Wnt-dependency onto colorectal cancers. Oncogene, 2020, 39(17): 3458-3472.
doi: 10.1038/s41388-020-1232-5
[15]   Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature, 2005, 434(7035): 843-850.
doi: 10.1038/nature03319
[16]   Moon R T, Kohn A D, De Ferrari G V, et al. WNT and β-catenin signalling: diseases and therapies. Nature Reviews Genetics, 2004, 5(9): 691-701.
doi: 10.1038/nrg1427
[17]   Luo W, Lin S C. Axin: a master scaffold for multiple signaling pathways. Neurosignals, 2004, 13(3): 99-113.
pmid: 15067197
[18]   Duda P, Akula S M, Abrams S L, et al. Targeting GSK3 and associated signaling pathways involved in cancer. Cells, 2020, 9(5): 1110.
doi: 10.3390/cells9051110
[19]   Garcia-Lezana T, Lopez-Canovas J L, Villanueva A. Signaling pathways in hepatocellular carcinoma. Advances in Cancer Research. Amsterdam: Elsevier, 2021: 63-101.
[20]   Chatterjee S, Sil P C. Targeting the crosstalks of Wnt pathway with hedgehog and notch for cancer therapy. Pharmacological Research, 2019, 142: 251-261.
doi: S1043-6618(18)31586-X pmid: 30826456
[21]   Dey A, Varelas X, Guan K L. Targeting the hippo pathway in cancer, fibrosis, wound healing and regenerative medicine. Nature Reviews Drug Discovery, 2020, 19(7): 480-494.
doi: 10.1038/s41573-020-0070-z pmid: 32555376
[22]   Azzolin L, Panciera T, Soligo S, et al. YAP/TAZ incorporation in the β-catenin destruction complex orchestrates the Wnt response. Cell, 2014, 158(1): 157-170.
doi: 10.1016/j.cell.2014.06.013 pmid: 24976009
[23]   Imajo M, Miyatake K, Iimura A, et al. A molecular mechanism that links Hippo signalling to the inhibition of Wnt/β-catenin signalling. The EMBO Journal, 2012, 31(5): 1109-1122.
doi: 10.1038/emboj.2011.487
[24]   Nowell C S, Radtke F. Notch as a tumour suppressor. Nature Reviews Cancer, 2017, 17(3): 145-159.
doi: 10.1038/nrc.2016.145 pmid: 28154375
[25]   Vilchez V. Targeting Wnt/β-catenin pathway in hepatocellular carcinoma treatment. World Journal of Gastroenterology, 2016, 22(2): 823.
doi: 10.3748/wjg.v22.i2.823 pmid: 26811628
[26]   Collu G M, Hidalgo-Sastre A, Brennan K. Wnt-Notch signalling crosstalk in development and disease. Cellular and Molecular Life Sciences, 2014, 71(18): 3553-3567.
doi: 10.1007/s00018-014-1644-x pmid: 24942883
[27]   Fang S, Liu M, Li L, et al. Lymphoid enhancer-binding factor-1 promotes stemness and poor differentiation of hepatocellular carcinoma by directly activating the NOTCH pathway. Oncogene, 2019, 38(21): 4061-4074.
doi: 10.1038/s41388-019-0704-y pmid: 30696957
[28]   Sarkar F H, Li Y W, Wang Z W, et al. The role of nutraceuticals in the regulation of Wnt and hedgehog signaling in cancer. Cancer and Metastasis Reviews, 2010, 29(3): 383-394.
doi: 10.1007/s10555-010-9233-4
[29]   Farahmand L, Darvishi B, Majidzadeh-A K, et al. Naturally occurring compounds acting as potent anti-metastatic agents and their suppressing effects on hedgehog and WNT/β-catenin signalling pathways. Cell Proliferation, 2017, 50(1): e12299.
[30]   Mullor J L, Sánchez P, Altaba A R. Pathways and consequences: hedgehog signaling in human disease. Trends in Cell Biology, 2002, 12(12): 562-569.
pmid: 12495844
[31]   Kerekes K, Trexler M, Bányai L, et al. Wnt inhibitory factor 1 binds to and inhibits the activity of sonic hedgehog. Cells, 2021, 10(12): 3496.
doi: 10.3390/cells10123496
[32]   Luo K X. Signaling cross talk between TGF-β/smad and other signaling pathways. Cold Spring Harbor Perspectives in Biology, 2017, 9(1): a022137.
[33]   Guo X, Wang X F. Signaling cross-talk between TGF-β/BMP and other pathways. Cell Research, 2009, 19(1): 71-88.
doi: 10.1038/cr.2008.302
[34]   Patel K D, Nguyen D X. Condensing and constraining WNT by TGF-Β. Nature Cell Biology, 2021, 23(3): 213-214.
doi: 10.1038/s41556-021-00649-2 pmid: 33723426
[35]   Tomar V S, Patil V, Somasundaram K. Temozolomide induces activation of Wnt/β-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biology and Toxicology, 2020, 36(3): 273-278.
doi: 10.1007/s10565-019-09502-7 pmid: 31758290
[36]   Barzegar Behrooz A, Talaie Z, Jusheghani F, et al. Wnt and PI3K/Akt/mTOR survival pathways as therapeutic targets in glioblastoma. International Journal of Molecular Sciences, 2022, 23(3): 1353.
doi: 10.3390/ijms23031353
[37]   Suzuki M, Shigematsu H, Nakajima T, et al. Synchronous alterations of Wnt and epidermal growth factor receptor signaling pathways through aberrant methylation and mutation in non-small cell lung cancer. Clinical Cancer Research, 2007, 13(20):6087-6092.
doi: 10.1158/1078-0432.CCR-07-0591
[38]   Wei S, Dai M M, Zhang C, et al. KIF2C: a novel link between Wnt/β-catenin and mTORC1 signaling in the pathogenesis of hepatocellular carcinoma. Protein & Cell, 2021, 12(10): 788-809.
[39]   Dahmani R, Just P A, Perret C. The Wnt/β-catenin pathway as a therapeutic target in human hepatocellular carcinoma. Clinics and Research in Hepatology and Gastroenterology, 2011, 35(11): 709-713.
doi: 10.1016/j.clinre.2011.05.010 pmid: 21778132
[40]   Ozcan M, Altay O, Lam S, et al. Improvement in the current therapies for hepatocellular carcinoma using a systems medicine approach. Advanced Biosystems, 2020, 4(6): e2000030.
[41]   Mani S K K, Zhang H, Diab A, et al. EpCAM-regulated intramembrane proteolysis induces a cancer stem cell-like gene signature in hepatitis B virus-infected hepatocytes. Journal of Hepatology, 2016, 65(5): 888-898.
doi: S0168-8278(16)30208-2 pmid: 27238755
[42]   Wands J R, Kim M. WNT/β-catenin signaling and hepatocellular carcinoma. Hepatology, 2014, 60(2): 452-454.
doi: 10.1002/hep.27081 pmid: 24644061
[43]   Wang L, Yao M, Fang M, et al. Expression of hepatic Wnt5a and its clinicopathological features in patients with hepatocellular carcinoma. Hepatobiliary & Pancreatic Diseases International, 2018, 17(3): 227-232.
[44]   Russell J O, Monga S P. Wnt/β-catenin signaling in liver development, homeostasis, and pathobiology. Annual Review of Pathology: Mechanisms of Disease, 2018, 13: 351-378.
doi: 10.1146/pathmechdis.2018.13.issue-1
[45]   Mavila, Thundimadathil. The emerging roles of cancer stem cells and Wnt/beta-catenin signaling in hepatoblastoma. Cancers, 2019, 11(10): 1406.
doi: 10.3390/cancers11101406
[46]   Yao Z X, Mishra L. Cancer stem cells and hepatocellular carcinoma. Cancer Biology & Therapy, 2009, 8(18): 1691-1698.
[47]   Mishra L, Banker T, Murray J, et al. Liver stem cells and hepatocellular carcinoma. Hepatology, 2009, 49(1): 318-329.
doi: 10.1002/hep.22704 pmid: 19111019
[48]   Majumdar A, Curley S A, Wu X F, et al. Hepatic stem cells and transforming growth factor β in hepatocellular carcinoma. Nature Reviews Gastroenterology & Hepatology, 2012, 9(9): 530-538.
[49]   Yamashita T, Ji J F, Budhu A, et al. EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features. Gastroenterology, 2009, 136(3): 1012-1024.
doi: 10.1053/j.gastro.2008.12.004 pmid: 19150350
[50]   Levrero M, Zucman-Rossi J. Mechanisms of HBV-induced hepatocellular carcinoma. Journal of Hepatology, 2016, 64(1): S84-S101.
doi: 10.1016/j.jhep.2016.02.021
[51]   Lee T K W, Guan X Y, Ma S. Cancer stem cells in hepatocellular carcinoma: from origin to clinical implications. Nature Reviews Gastroenterology & Hepatology, 2022, 19(1): 26-44.
[52]   Yamashita T, Budhu A, Forgues M, et al. Activation of hepatic stem cell marker EpCAM by Wnt-beta-catenin signaling in hepatocellular carcinoma. Cancer Research, 2007, 67(22): 10831-10839.
doi: 10.1158/0008-5472.CAN-07-0908 pmid: 18006828
[53]   Wang C, Yang W, Yan H X, et al. Hepatitis B virus X (HBx) induces tumorigenicity of hepatic progenitor cells in 3, 5-diethoxycarbonyl-1, 4-dihydrocollidine-treated HBx transgenic mice. Hepatology (Baltimore, Md), 2012, 55(1): 108-120.
doi: 10.1002/hep.24675
[54]   Gurzu S, Kobori L, Fodor D, et al. Epithelial mesenchymal and endothelial mesenchymal transitions in hepatocellular carcinoma: a review. BioMed Research International, 2019, 2019: 2962580.
[55]   Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nature Reviews Molecular Cell Biology, 2014, 5(3): 178-196.
[56]   张青云, 傅俊江, 陈汉春. 上皮间质转化介导肿瘤转移的分子机制. 生命科学研究, 2018, 22(6): 503-510.
[56]   Zhang Q Y, Fu J J, Chen H C. The molecular mechanism of epithelial-mesenchymal transition mediating tumor metastasis. Life Science Research, 2018, 22(6): 503-510.
[57]   Jin Y J, Wu D, Yang W W, et al. Hepatitis B virus x protein induces epithelial-mesenchymal transition of hepatocellular carcinoma cells by regulating long non-coding RNA. Virology Journal, 2017, 14(1): 238.
doi: 10.1186/s12985-017-0903-5 pmid: 29258558
[58]   Miao C G, Yang Y Y, He X, et al. Wnt signaling in liver fibrosis: progress, challenges and potential directions. Biochimie, 2013, 95(12): 2326-2335.
doi: 10.1016/j.biochi.2013.09.003
[59]   Miao C G, Yang Y Y, He X, et al. Wnt signaling in liver fibrosis: progress, challenges and potential directions. Biochimie, 2013, 95(12): 2326-2335.
doi: 10.1016/j.biochi.2013.09.003
[60]   Yao B W, Li Y Z, Wang L, et al. MicroRNA-3194-3p inhibits metastasis and epithelial-mesenchymal transition of hepatocellular carcinoma by decreasing Wnt/β-catenin signaling through targeting BCL9. Artifical Cells, Nanomedicine, and Biotechnology, 2019, 47(1): 3885-3895.
[61]   Wu S S, Chen S, Lin N, et al. Long non-coding RNA SUMO1P 3 promotes hepatocellular carcinoma progression through activating Wnt/β-catenin signalling pathway by targeting miR-320a. Journal of Cellular and Molecular Medicine, 2020, 24(5): 3108-3116.
doi: 10.1111/jcmm.v24.5
[62]   Zhang N B, Chen X. A positive feedback loop involving the LINC00346/β-catenin/MYC axis promotes hepatocellular carcinoma development. Cellular Oncology, 2020, 43(1): 137-153.
doi: 10.1007/s13402-019-00478-4 pmid: 31691159
[63]   Wang H L, Ou J R, Jian Z X, et al. MiR-186 modulates hepatocellular carcinoma cell proliferation and mobility via targeting MCRS1-mediated Wnt/β-catenin signaling. Journal of Cellular Physiology, 2019, 234(12): 23135-23145.
doi: 10.1002/jcp.28878 pmid: 31140612
[64]   Ma Y K, Shen T H, Yang X Y. Upregulation of LncRNA FAM83H-AS1 in hepatocellular carcinoma promotes cell proliferation, migration and invasion by Wnt/β-catenin pathway. European Review for Medical and Pharmacological Sciences, 2019, 23(18): 7855-7862.
doi: 18995 pmid: 31599410
[65]   Zhang X D, Xu X L, Zhang Z C, et al. Linc-KILH potentiates Notch 1 signaling through inhibiting KRT19 phosphorylation and promotes the malignancy of hepatocellular carcinoma. International Journal of Biological Sciences, 2021, 17(3): 768-780.
doi: 10.7150/ijbs.52279
[66]   Tan A C, Li Q X, Chen L Z. CircZFR promotes hepatocellular carcinoma progression through regulating miR-3619-5p/CTNNB1 axis and activating Wnt/β-catenin pathway. Archives of Biochemistry and Biophysics, 2019, 661: 196-202.
doi: S0003-9861(18)30674-X pmid: 30468709
[67]   Kong S Z, Xue H, Li Y C, et al. The long noncoding RNA OTUD6B-AS 1 enhances cell proliferation and the invasion of hepatocellular carcinoma cells through modulating GSKIP/Wnt/β-catenin signalling via the sequestration of miR-664b-3p. Experimental Cell Research, 2020, 395(1): 112180.
[68]   Huang G Q, Liang M, Liu H Y, et al. CircRNA hsa_circRNA_104348 promotes hepatocellular carcinoma progression through modulating miR-187-3p/RTKN2 axis and activating Wnt/β-catenin pathway. Cell Death & Disease, 2020, 11(12): 1-14.
[69]   Yang B M, Zhao J R, Huo T T, et al. Effects of CircRNA-ITCH on proliferation and apoptosis of hepatocellular carcinoma cells through inhibiting Wnt/β-catenin signaling pathway. Journal of BUON, 2020, 25(3): 1368-1374.
pmid: 32862578
[70]   Xin R Q, Li W B, Hu Z W, et al. MiR-329-3p inhibits hepatocellular carcinoma cell proliferation and migration through USP22-Wnt/β-Catenin pathway. European Review for Medical Pharmacological Sciences, 2020, 24(19): 9932-9939.
[71]   Wang X L, Shi M, Xiang T, et al. Long noncoding RNA DGCR5 represses hepatocellular carcinoma progression by inactivating Wnt signaling pathway. Journal of Cellular Biochemistry, 2019, 120(1): 275-282.
doi: 10.1002/jcb.v120.1
[72]   Tang H, Zhao H, Yu Z Y, et al. MicroRNA-194 inhibits cell invasion and migration in hepatocellular carcinoma through PRC1-mediated inhibition of Wnt/β-catenin signaling pathway. Digestive and Liver Disease, 2019, 51(9): 1314-1322.
doi: S1590-8658(19)30098-2 pmid: 30948333
[73]   Han W J, Wang Q H, Zheng L S, et al. The role of lncRNA ANRIL in the progression of hepatocellular carcinoma. The Journal of Pharmacy and Pharmacology, 2021, 73(8): 1033-1038.
doi: 10.1093/jpp/rgaa047
[74]   Gao J, Dai C, Yu X, et al. MicroRNA-485-5p inhibits the progression of hepatocellular carcinoma through blocking the WBP2/Wnt signaling pathway. Cellular Signalling, 2020, 66: 109466.
[75]   Chi X B, Jiang Y, Chen Y B, et al. MicroR-505/heterogeneous nuclear ribonucleoprotein M inhibits hepatocellular carcinoma cell proliferation and induces cell apoptosis through the Wnt/β-catenin signaling pathway. Biomarkers in Medicine, 2020, 14(11): 981-996.
doi: 10.2217/bmm-2019-0511 pmid: 32940078
[76]   Li D D, Zhang J W, Yang J, et al. CircMTO1 suppresses hepatocellular carcinoma progression via the miR-541-5p/ZIC1 axis by regulating Wnt/β-catenin signaling pathway and epithelial-to-mesenchymal transition. Cell Death & Disease, 2022, 13(1): 12.
[77]   Hu X B, Wang R F, Ren Z G, et al. MiR-26b suppresses hepatocellular carcinoma development by negatively regulating ZNRD1 and Wnt/β-catenin signaling. Cancer Medicine, 2019, 8(17): 7359-7371.
doi: 10.1002/cam4.2613 pmid: 31637871
[78]   戴美琴, 蔡茁, 陈娜娜, 等. 苦参碱通过调控β-catenin信号通路抑制肝癌细胞干性. 南方医科大学学报, 2019, 39(10): 1239-1245.
[78]   Dai M Q, Cai Z, Chen N N, et al. Matrine suppresses stemness of hepatocellular carcinoma cells by regulating β-catenin signaling pathway. Journal of Southern Medical University, 2019, 39(10): 1239-1245.
[79]   Yin H S, Que R S, Liu C Y, et al. Survivin-targeted drug screening platform identifies a matrine derivative WM-127 as a potential therapeutics against hepatocellular carcinoma. Cancer Letters, 2018, 425: 54-64.
doi: S0304-3835(18)30247-7 pmid: 29608986
[80]   朱云, 李成, 林鑫盛, 等. 白术多糖对肝癌细胞增殖及侵袭的抑制作用及其机制. 南方医科大学学报, 2019, 39(10): 1180-1185.
[80]   Zhu Y, Li C, Lin X S, et al. Effect of Atractylodes macrocephala polysaccharide on proliferation and invasion of hepatocellular carcinoma cells in vitro. Journal of Southern Medical University, 2019, 39(10): 1180-1185.
[81]   Zeyada M S, Abdel-Rahman N, El-Karef A, et al. Niclosamide-loaded polymeric micelles ameliorate hepatocellular carcinoma in vivo through targeting Wnt and Notch pathways. Life Sciences, 2020, 261: 118458.
[82]   Tan H Y, Wang N, Li S, et al. Repression of WT1-mediated LEF 1 transcription by mangiferin governs β-catenin-independent Wnt signalling inactivation in hepatocellular carcinoma. Cellular Physiology and Biochemistry, 2018, 47(5): 1819-1834.
doi: 10.1159/000491063
[83]   Pan F F, Zheng Y B, Shi C J, et al. H19-Wnt/β-catenin regulatory axis mediates the suppressive effects of apigenin on tumor growth in hepatocellular carcinoma. European Journal of Pharmacology, 2021, 893: 173810.
[84]   Kang Q Z, Gong J, Wang M F, et al. 6-C-(E-phenylethenyl)naringenin attenuates the stemness of hepatocellular carcinoma cells by suppressing Wnt/β-catenin signaling. Journal of Agricultural and Food Chemistry, 2019, 67(50): 13939-13947.
doi: 10.1021/acs.jafc.9b05733 pmid: 31769973
[85]   Gong T, Ning X, Deng Z Y, et al. Propofol-induced miR-219-5p inhibits growth and invasion of hepatocellular carcinoma through suppression of GPC3-mediated Wnt/β-catenin signalling activation. Journal of Cellular Biochemistry, 2019, 120(10): 16934-16945.
doi: 10.1002/jcb.28952 pmid: 31104336
[86]   Liao S T, Chen H Y, Liu M, et al. Aquaporin 9 inhibits growth and metastasis of hepatocellular carcinoma cells via Wnt/β-catenin pathway. Aging, 2020, 12(2): 1527-1544.
doi: 10.18632/aging.v12i2
[1] LI Kai-tong, LIU Jin-qing, CAI Wang-wei, XIAO Man, SHEN Bei-fen, WANG Jing, FENG Jian-nan. Advances of Therapeutic Monoclonal Antibodies Targeting Human Interleukin-6 Protein[J]. China Biotechnology, 2022, 42(4): 58-67.
[2] ZHANG Hui,CHEN Hua-ning,KUDELAIDI Kuerban,WANG Song-na,LIU Jia-yang,ZHAO Zhen,YE Li. The Role of Wnt/β-catenin Signaling Pathway in Carcinogenesis and Immunotherapy[J]. China Biotechnology, 2022, 42(1/2): 104-111.
[3] ZHAO Jiu-mei,WANG Zhe,LI Xue-ying. Role of Signal Pathways and Related Factors Regulating Cartilage Formation in Bone Differentiation of Bone Marrow Mesenchymal Stem Cells[J]. China Biotechnology, 2021, 41(10): 62-72.
[4] WANG Tian-zhu,WU Qing,ZHANG Ning,WANG Dong-jie,XU Zhou,LUO Wei,DU Zong-jun. Advances in Research on Melanin Synthesis and Signaling Pathway in Fish[J]. China Biotechnology, 2020, 40(5): 84-93.
[5] GU Hao,GUO Xin-yu,DU Jing-jing,ZHANG Pei-wen,WANG Ding-guo,LIAO Kun,ZHANG Shun-hua,ZHU Li. The Effect of miR-186-5p on the Proliferation and Differentiation of 3T3-L1 Preadipocyte[J]. China Biotechnology, 2020, 40(3): 21-30.
[6] Yu-han CHENG,Xi GONG,Yu-ping LUO. Advances in Studies on the Structure, Function and Related Antibodies of CD133 (Prominin-1)[J]. China Biotechnology, 2019, 39(5): 105-113.
[7] ZHONG Peng-qiang,LIU Bei-zhong,YAO Juan-juan,LIU Dong-dong,YUAN Zhen,LIU Jun-mei,CHEN Min,ZHONG Liang. Knock-down of ACTL6A Promote Differentiation of NB4 Cells via the Notch1 Signaling Pathway[J]. China Biotechnology, 2018, 38(12): 1-6.
[8] JIANG Chun-lian, WANG Yan-lu, LUO Yu-ping. Development of Neurogenesis in the Adult Mammalian[J]. China Biotechnology, 2017, 37(5): 107-112.
[9] SHEN Xin, MA Yi-tong, YANG Yi-ning, LIU Fen, YU Zi-Xiang, CHEN Bang-dang, CHEN You. Cardiac Transfection of AAV9-FrzA Gene Intervene Wnt Signal Pathway in Ischemic Heart Failure Mice[J]. China Biotechnology, 2013, 33(7): 13-17.
[10] HE Ding-wen, YIN Ming, WU Ya-hua, ZHOU Rong-ping, WEI Qiang-qiang, YIN Chang-chang. Wnt/β-catenin Signaling Pathway In Neuronal Differentiation of Rat BMSCs[J]. China Biotechnology, 2013, 33(3): 61-67.
[11] SHI Juan, YANG Jia-li, MA Ling-jie, BAO Shao-wen, MA Yan, CHENG Long, MA Chun-yan, LI Yong, LIU Xiao-ming. The Role of Canonical Wnt Signaling Pathway in the Lung Epithelial Cells against Mycobacteria Infection[J]. China Biotechnology, 2013, 33(12): 9-14.
[12] LI Yu-ye, LI Xing-xing, SUN Shuang-shuang, ZOU Zheng-yu, ZHANG Yun-yuan, DUAN Liang, YE Li-wei, WU Rui, YANG Xia, HE Tong-chuan, ZHOU Lan. Effects and Possible Mechanism of Protein S100A6 on β-catenin[J]. China Biotechnology, 2011, 31(11): 18-23.
[13] . The Influence of Peptidoglycan of Lactobacillus on immune function of Mouse[J]. China Biotechnology, 2006, 26(08): 98-102.