Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (1): 35-41    DOI: 10.13523/j.cb.2209002
    
A Solid-phase Synthesis Method and Purification of Polypeptides
WANG Yu-hang,CHEN Xue-ming,LIU Su-sheng,RUAN Zhi-jun,ZHANG Min,SONG Chun-li,YIN Feng*(),LI Zi-gang*()
Shenzhen Bay Laboratory Pingshan Translational Medicine Center, Shenzhen 518118, China
Download: HTML   PDF(838KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: Compared with small molecule chemical drugs, peptides have the advantages of high biological activity, strong specificity, and drug resistance, and thus, they become one of the priorities of new drug research and development. Peptide synthesis is the premise of the research and development of polypeptide drugs. Therefore, it is very important to establish a more convenient and efficient synthesis method. Methods: Fmoc solid phase synthesis was used for HF01 synthesis of polypeptides. First, the optimal system was determined by comparing the amino acid linked reaction system and the amino acid deprotection reaction system, and the acetylation group was applied for peptide N-Term. Then, the peptides were cut off from the resin. Finally, the obtained peptides were purified using both an HPLC and a mass spectrometer. Results: The ligation and deprotection reaction system for polypeptide synthesis was determined, and the polypeptide was successfully synthesized and purified with high purification efficiency of 98.3%. Conclusion: Above all, the operation is simple and affordable. This method is commonly used for polypeptide synthesis and provides feasibility for polypeptide drug structure studies. It is expected that this reliable synthesis method will provide help for more laboratory researchers.



Key wordsPolypeptide      Fmoc solid-phase synthesis      Amino acid connection      Liquid chromatography tandem mass spectrometry (LC-MS/MS)      Purification     
Received: 02 September 2022      Published: 14 February 2023
ZTFLH:  Q816  
Cite this article:

WANG Yu-hang, CHEN Xue-ming, LIU Su-sheng, RUAN Zhi-jun, ZHANG Min, SONG Chun-li, YIN Feng, LI Zi-gang. A Solid-phase Synthesis Method and Purification of Polypeptides. China Biotechnology, 2023, 43(1): 35-41.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2209002     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I1/35

Fig.1 Polypeptide synthesis route
反应体系 反应时间
DIPEA-HATU 30 min+30 min
DIPEA-HATU 1 h
HOBt-DIC 45 min~1 h
Table 1 Comparison of the two amino acid linked reaction systems
反应体系 反应时间
50%吗啡啉、50%DMF 30 min+30 min
20%哌啶、80%DMF 5 min+15 min[12]
20%哌啶、80%DMF 5 min+5 min
Table 2 Comparison of the reaction systems for the different deprotection groups
多肽 理论分子量 理论分子离子峰 肽序
HF01 1 910.2 637.7, 956.1 GSRALCYSQWWRRLK
Table 3 High-performance liquid phase and mass spectrometry detection data for the polypeptide HF01
Fig.2 HPLC detection results
Fig.3 Mass spectrometry detection results
[1]   Bruno B J, Miller G D, Lim C S. Basics and recent advances in peptide and protein drug delivery. Therapeutic Delivery, 2013, 4(11): 1443-1467.
doi: 10.4155/tde.13.104 pmid: 24228993
[2]   Brauer F, Schmidt K, Zahn R C, et al. A rationally engineered anti-HIV peptide fusion inhibitor with greatly reduced immunogenicity. Antimicrobial Agents and Chemotherapy, 2013, 57(2): 679-688.
doi: 10.1128/AAC.01152-12 pmid: 23147734
[3]   张伟, 宋竟婧, 张邦治, 等. 多肽新药研发策略研究进展. 中国科学: 化学, 2013, 43(8): 941-952.
[3]   Zhang W, Song J J, Zhang B Z, et al. Advances in the strategies for the development of novel peptide drugs. Scientia Sinica (Chimica), 2013, 43(8): 941-952.
[4]   王德心. 活性多肽与药物开发. 北京: 中国医药科技出版社, 2008: 6-26.
[4]   Wang D X. Peptides and drug development. Beijing: China Medical Science Press, 2008: 6-26.
[5]   厉保秋. 多肽药物研究与开发. 北京: 人民卫生出版社, 2011: 3-50.
[5]   Li B Q. Peptide drugs research and development. Beijing: People’s Medical Publishing House, 2011: 3-50.
[6]   Eggink D, Bontjer I, de Taeye S W, et al. HIV-1 anchor inhibitors and membrane fusion inhibitors target distinct but overlapping steps in virus entry. Journal of Biological Chemistry, 2019, 294(15): 5736-5746.
doi: 10.1074/jbc.RA119.007360 pmid: 30696772
[7]   徐君, 周长林, 窦洁. 抗病毒多肽药物的研究进展. 药物生物技术, 2017, 24(3): 249-254.
[7]   Xu J, Zhou C L, Dou J. The research progress of antiviral peptides. Pharmaceutical Biotechnology, 2017, 24(3): 249-254.
[8]   马春喜, 宋可可, 胡娇, 等. 多肽在流感病毒研究中的应用. 中国家禽, 2018, 40(24): 39-44.
[8]   Ma C X, Song K K, Hu J, et al. Applications of the peptides in the research of influenza virus. China Poultry, 2018, 40(24): 39-44.
[9]   胡玉玺, 蒋煜, 韩天娇. 制备工艺和过程控制对合成多肽药物有关物质的影响. 中国新药杂志, 2017, 26(18): 2143-2148.
[9]   Hu Y X, Jiang Y, Han T J. Effects of manufacturing process and process control on related substances of synthetic peptide drugs. Chinese Journal of New Drugs, 2017, 26(18): 2143-2148.
[10]   王克全, 徐寒梅. 多肽类药物的研究进展. 药学进展, 2015, 39(9): 642-650.
[10]   Wang K Q, Xu H M. Advances in research on polypeptide drugs. Progress in Pharmaceutical Sciences, 2015, 39(9): 642-650.
[11]   孙立春, Coy D H. 多肽药物研究进展. 上海医药, 2014, 35(5): 55-60.
[11]   Sun L C, Coy D H. The development in peptide-based drugs. Shanghai Medical & Pharmaceutical Journal, 2014, 35(5): 55-60.
[12]   唐宏琨. 减肥多肽JFT的固相合成及纯化制备工艺研究. 西安: 西北大学, 2007.
[12]   Tang H K. Studies on solid-phase synthesis, purification and preparation of peptide JFT. Xi’an: Northwest University, 2007.
[13]   Erak M, Bellmann-Sickert K, Els-Heindl S, et al. Peptide chemistry toolbox -transforming natural peptides into peptide therapeutics. Bioorganic & Medicinal Chemistry, 2018, 26(10): 2759-2765.
doi: 10.1016/j.bmc.2018.01.012
[14]   Lawrenson S B, Arav R, North M. The greening of peptide synthesis. Green Chemistry, 2017, 19(7): 1685-1691.
doi: 10.1039/C7GC00247E
[15]   郑龙, 田佳鑫, 张泽鹏, 等. 多肽药物制备工艺研究进展. 化工学报, 2021, 72(7): 3538-3550.
[15]   Zheng L, Tian J X, Zhang Z P, et al. Progress on pharmaceutical engineering of peptide-based drugs. CIESC Journal, 2021, 72(7): 3538-3550.
[16]   孙李丹, 黄嬛. 基于基金项目的药学创新实验设计——以“Fmoc固相合成多肽”为例. 嘉兴学院学报, 2019, 31(6): 136-141.
[16]   Sun L D, Huang X. An experiment design of pharmacy innovation based on a funded project-a case study on “fmoc solid phase peptide synthesis”. Journal of Jiaxing University, 2019, 31(6): 136-141.
[17]   Chan W C, White P D. Fmoc solid phase and peptide synthesis. Oxford: Oxford University Presee, 2000: 170-190.
[18]   黄蓓. 多肽固相合成研究进展. 河南化工, 2013, 30(1): 28-30, 58.
[18]   Huang B. Research progress of solid phase peptide synthesis. Henan Chemical Industry, 2013, 30(1): 28-30, 58.
[19]   韩香, 顾军. 固相法在多肽合成领域的应用. 药学进展, 2004, 28(1): 10-14.
[19]   Han X, Gu J. Application of solid-phase peptides synthesis. Progress in Pharmaceutical Sciences, 2004, 28(1): 10-14.
[20]   曲朋, 宋利, 赵好冬, 等. 多肽合成研究进展. 中国现代中药, 2015, 17(3): 285-289, 295.
[20]   Qu P, Song L, Zhao H D, et al. Research progress of peptide synthesis. Modern Chinese Medicine, 2015, 17(3): 285-289, 295.
[21]   刘杰, 高晨昊, 甘一如, 等. FMOC新型固相法合成胸腺素α1及其反应途径. 天津药学, 2001, 13(3): 39-41.
[21]   Liu J, Gao C H, Gan Y R, et al. Synthesis of thymic α 1 and its reaction pathway by Fmoc novel solid-phase method. Tianjin Pharmacy, 2001, 13(3): 39-41.
[1] ZHAO Bing-jie,GUO Yan-bin. Advances in Extraction, Purification and Bioactivity of Polysaccharides from Edible Fungi[J]. China Biotechnology, 2022, 42(1/2): 146-159.
[2] ZHANG Ling,CAO Xiao-dan,YANG Hai-xu,LI Wen-lei. The Application of Continuous Purification in Affinity Chromatography and Evaluation of Production Scale-up[J]. China Biotechnology, 2021, 41(6): 38-44.
[3] ZHANG Xiao-hang,LI Yuan-yuan,JIA Min-xuan,GU Qi. Identification and Expression of Elastin-like Polypeptides[J]. China Biotechnology, 2020, 40(8): 33-40.
[4] LV Yi-fan,LI Geng-dong,XUE Nan,LV Guo-liang,SHI Shao-hui,WANG Chun-sheng. Prokaryotic Expression, Purification of LbCpf1 Protein Gene and in Vitro Cleavage Activity Assay[J]. China Biotechnology, 2020, 40(8): 41-48.
[5] JIANG Dan-dan,WANG Yun-long,LI Yu-lin,Zhang Yi-qing. Study on the Delivery of RGD Modified Virus-Like Particles to ICG Targeted Tumors[J]. China Biotechnology, 2020, 40(7): 22-29.
[6] XIE Hang-hang,BAI Hong-mei,YE Chao,CHEN Yong-jun,YUAN Ming-cui,MA Yan-bing. The Purification Procedure for the Recombinant HBcAg Virus-like Particle Easy to Generate Aggregation[J]. China Biotechnology, 2020, 40(5): 40-47.
[7] WEI Wei,CHANG Bao-gen,WANG Ying,LU Fu-ping,LIU Fu-feng. Heterologous Expression, Purification and Aggregation Characterization of Tau Core Fragment 306-378[J]. China Biotechnology, 2020, 40(5): 22-29.
[8] LIU Zhen-zhen,TIAN Da-yong. Development of Sucrose Density Gradient Centrifugation Purification Process for Rabies Vaccine[J]. China Biotechnology, 2020, 40(4): 25-33.
[9] ZHU Tong-tong,YANG Lei,LIU Ying-bao,SUN Wen-xiu,ZHANG Xiu-guo. Purification and Crystallization of PcCRN20-C from Phytophthora capsici[J]. China Biotechnology, 2020, 40(1-2): 116-123.
[10] PAN Bing-jv,ZHANG Wan-yi,SHEN Hui-tao,LIU Ting-ting,LI Zhong-yuan,LUO Xue-gang,SONG Ya-jian. Research Progress on Separation and Purification of Mannan Oligosaccharide[J]. China Biotechnology, 2020, 40(11): 90-95.
[11] Yu-feng XIE,Xue-mei HAN,Fu-ping LU. Expression, Purification and Enzymatic Properties of β-glucosidase from Lactobacillus paracasei[J]. China Biotechnology, 2019, 39(5): 72-79.
[12] JING Jia-mei,XUN Xin,WANG Min,PENG Ru-chao,SHI Yi. Expression and Purification of C-terminal of Arenavirus Polymerase and Screening of Crystallization Conditions[J]. China Biotechnology, 2019, 39(12): 18-23.
[13] ZHU Meng-lu,WANG Xue-yu,LIU Xin,LU Fu-ping,SUN Deng-yue,QIN Hui-min. Heterologous Expression, Purification and Enzymatic Properties of a Novel Leucine 5-Hydroxylase[J]. China Biotechnology, 2019, 39(12): 24-34.
[14] Chao-di TONG,Jian-ping WU,Li-rong YANG,Gang XU. Crystal Structural Analysis of DehDIV-R by X-ray Crystallography[J]. China Biotechnology, 2018, 38(8): 19-25.
[15] Jun-jun CHEN,Ying LOU,Yuan-xing ZHANG,Qin LIU,Xiao-hong LIU. Expression and Purification of Proliferating Cell Nuclear Antigen in Spodoptera frugiperda Cells[J]. China Biotechnology, 2018, 38(7): 14-20.