Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (1): 27-34    DOI: 10.13523/j.cb.2207053
    
Recombinant Expression of sFlt-1, a Marker of Circulatory System in Preeclampsia, and Establishment of a Chemiluminescence Detection Method
LIN Yue-yang,KE Wen-feng,REN He,BAI Zhong-hu*()
National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
Download: HTML   PDF(793KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: To express soluble fms-like tyrosine kinase-1 (sFlt-1) recombinant protein and establish a chemiluminescence immunoassay detection method for sFlt-1. Methods: The pcDNA3.4-sFlt-1-His*6 expression vector was constructed and transfected into HEK293 cells for recombinant expression of sFlt-1. Using streptavidin-biotin affinity system and double antibody sandwich method, the quantitative detection of sFlt-1 was realized. Results: The minimum detection limit of the method is 2 pg/mL, the linear range is 20 ~ 40 000 pg/mL, the average recovery is 92%, the intra-assay and inter-assay precision coefficients of variation (CV) are less than 10%, and the correlation coefficient R2 compared with the PerkinElmer diagnostic kit is 0.925 2. Conclusion: The sFlt-1 protein with natural biological activity was successfully recombinantly expressed, and a sFlt-1 CLIA detection method with good performance was established, which can be further developed and applied to the diagnosis and screening of preeclampsia.



Key wordsPreeclampsia sFlt-1      Recombinant expression      Chemiluminescence immunoassay     
Received: 25 July 2022      Published: 14 February 2023
ZTFLH:  R446  
Cite this article:

LIN Yue-yang, KE Wen-feng, REN He, BAI Zhong-hu. Recombinant Expression of sFlt-1, a Marker of Circulatory System in Preeclampsia, and Establishment of a Chemiluminescence Detection Method. China Biotechnology, 2023, 43(1): 27-34.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2207053     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I1/27

Fig.1 Double-enzyme digestion verification of recombinant plasmid and SDS-PAGE verification of recombinant protein (a) M: DNA marker; 1: Enzyme cleavage product (b)M: Protein marker; 1: Purified recombinant protein
Dilution factor of sFlt-1 Relative light unit
2 117 397 206
10 32 820 336
100 3 380 248
1 000 308 014
Negative control 168 219
Table 1 Detection of biological activity of sFlt-1
Fig.2 Screening results of sFlt-1 antibody combinations (a) Eight antibody combinations were screened with high and low value serum (b) Serum correlation of antibody combination H
Sample
/(pg·
mL-1)
Ab-HRP/(μg·mL-1) Ab-HRP/(μg·mL-1) Ab-HRP/(μg·mL-1)
Ab-biotin
/(μg·mL-1)
Ab-biotin
/(μg·mL-1)
Ab-biotin
/(μg·mL-1)
Ab-biotin
/(μg·mL-1)
Ab-biotin
/(μg·mL-1)
Ab-biotin
/(μg·mL-1)
Ab-biotin
/(μg·mL-1)
Ab-biotin
/(μg·mL-1)
Ab-biotin
/(μg·mL-1)
587 864 805 833 905 781 940 1 565 258 1 563 540 1 470 320 2 308 847 2 367 402 2 245 319
1 396 2 293 985 2 445 753 2 220 136 3 857 769 3 866 457 4 216 600 5 510 167 6 652 155 5 580 414
2 285 3 662 354 3 218 309 3 312 971 6 159 777 6 338 059 5 943 730 7 620 010 8 486 838 7 765 782
Table 2 Screening of used concentrations of antibody combination
Fig.3 The effect of the change in the incubation time of the reaction system on the signal value
Object Ratio of sample
concentrations
Ratio of sample RLU for different incubation times
10 min 20 min 30 min
Sample 2/Sample 1 2.4 2.9 2.7 2.6
Sample 3/Sample 2 1.6 1.6 1.4 1.5
Sample 3/Sample 1 3.9 4.5 3.8 3.9
S3/S2 2.5 2.8 2.6 2.5
S4/S3 2.5 2.8 2.7 2.7
S5/S4 4.0 3.8 3.4 3.1
S6/S5 4.0 3.1 3.2 3.2
S6/S1 100.0 91.5 77.3 69.1
Table 3 The effect of different incubation times on the pull-off ratio of the luminescence value of the samples
Sample The oretical
concentration
/(pg·mL-1)
Detection
concentration
/(pg·mL-1)
Recovery
rate/%
Sample 1 5 144.56 4 689.21 90
Sample 2 9 456.17 8 903.73 94
Table 4 Accuracy evaluation
Proposed
concentration
/(pg·mL-1)
Batch 1 Batch 2 Batch 3 Inter-assay precision
sFlt-1
/(pg·mL-1)
CV/% sFlt-1
/(pg·mL-1)
CV/% sFlt-1
/(pg·mL-1)
CV/% sFlt-1
/(pg·mL-1)
CV/%
1 215 1 251.32 5.71 1 170.46 6.37 1 260.00 4.69 1 227.26 6.42
21 824 21 783.53 3.04 20 899.19 3.26 22 083.88 2.96 21 588.87 3.83
Table 5 Precision evaluation
Theoretical concentration/(ng·mL-1) Measured concentration/(ng·mL-1) Deviation/%
0.020 0.019 -4.26
0.578 0.600 3.82
1.136 1.239 9.07
2.251 2.099 -6.76
4.483 4.319 -3.64
11.177 10.121 -9.44
22.333 24.245 8.56
33.490 31.543 -5.81
44.646 40.846 -8.50
Table 6 Validation of linear range of sFlt-1 detection method
Fig.4 Linear range fitting results for the detection method
Fig.5 Correlation of this method with PerkinElmer detection results
[1]   Brown M A, Magee L A, Kenny L C, et al. Hypertensive disorders of pregnancy. Hypertension, 2018, 72(1): 24-43.
doi: 10.1161/HYPERTENSIONAHA.117.10803 pmid: 29899139
[2]   Ilekis J V, Reddy U M, Roberts J M. Preeclampsia—a pressing problem: an executive summary of a National Institute of Child Health and Human Development workshop. Reproductive Sciences (Thousand Oaks, Calif), 2007, 14(6): 508-523.
[3]   Rolnik D L, Wright D, Poon L C, et al. Aspirin versus placebo in pregnancies at high risk for preterm preeclampsia. The New England Journal of Medicine, 2017, 377(7): 613-622.
doi: 10.1056/NEJMoa1704559 pmid: 28657417
[4]   Wu S W, Zhang W Y. Effects of modes and timings of delivery on feto-maternal outcomes in women with severe preeclampsia: a multi-center survey in mainland China. International Journal of General Medicine, 2021, 14: 9681-9687.
doi: 10.2147/IJGM.S335893
[5]   Ni Y Y, Cheng W W. Comparison of indications of pregnancy termination and prognosis of mothers and neonates in early- and late-onset preeclampsia. Hypertension in Pregnancy, 2016, 35(3): 315-322.
doi: 10.3109/10641955.2016.1143486 pmid: 26930037
[6]   American College of Obstetricians and Gynecologists, Task Force on Hypertension in Pregnancy. Hypertension in pregnancy, report of the American college of obstetricians and gynecologists’ task force on hypertension in pregnancy. Obstetrics and Gynecology, 2013, 122(5): 1122-1131.
[7]   Rolfo A, Attini R, Nuzzo A M, et al. Chronic kidney disease may be differentially diagnosed from preeclampsia by serum biomarkers. Kidney International, 2013, 83(1): 177-181.
doi: 10.1038/ki.2012.348 pmid: 23014459
[8]   Young B, Levine R J, Salahuddin S, et al. The use of angiogenic biomarkers to differentiate non-HELLP related thrombocytopenia from HELLP syndrome. The Journal of Maternal-Fetal & Neonatal Medicine, 2010, 23(5): 366-370.
[9]   Clark D E, Smith S K, He Y L, et al. A vascular endothelial growth factor antagonist is produced by the human placenta and released into the maternal circulation. Biology of Reproduction, 1998, 59(6): 1540-1548.
doi: 10.1095/biolreprod59.6.1540 pmid: 9828203
[10]   Hornig C, Barleon B, Ahmad S, et al. Release and complex formation of soluble VEGFR-1 from endothelial cells and biological fluids. Laboratory Investigation, 2000, 80(4): 443-454.
doi: 10.1038/labinvest.3780050 pmid: 10780661
[11]   Maynard S E, Min J Y, Merchan J, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. The Journal of Clinical Investigation, 2003, 111(5): 649-658.
doi: 10.1172/JCI17189
[12]   Levine R J, Maynard S E, Qian C, et al. Circulating angiogenic factors and the risk of preeclampsia. The New England Journal of Medine, 2004, 350(7): 672-683.
[13]   Thadhani R, Mutter W P, Wolf M, et al. First trimester placental growth factor and soluble fms-like tyrosine kinase 1 and risk for preeclampsia. The Journal of Clinical Endocrinology & Metabolism, 2004, 89(2): 770-775.
doi: 10.1210/jc.2003-031244
[14]   Kendall R L, Wang G, Disalvo J, et al. Specificity of vascular endothelial cell growth factor receptor ligand binding domains. Biochemical and Biophysical Research Communications, 1994, 201(1): 326-330.
pmid: 8198591
[15]   周齐洋, 黄建荣, 陈祥, 等. 血清淀粉样蛋白A化学发光免疫检测技术开发. 生物学杂志, 2019, 36(4): 85-88.
[15]   Zhou Q Y, Huang J R, Chen X, et al. Development of chemiluminescent immunoassay for human serum amyloid A. Journal of Biology, 2019, 36(4): 85-88.
[16]   杨昌国, 许叶, 张抗. 精密度评价和方法比较中NCCLS评价方案的应用. 临床检验杂志, 1999, 17(1): 47-49.
[16]   Yang C G, Xu Y, Zhang K. Application of NCCLS evaluation scheme in precision evaluation and method comparison. Journal of Clinical Laboratory Science, 1999, 17(1): 47-49.
[17]   Yang H, Guo F, Guo Q, et al. The clinical value of PlGF and the sFlt1/PlGF ratio in the management of hypertensive pregnancy disorders: a retrospective real-world study in China. Clinica Chimica Acta, 2022, 528: 90-97.
doi: 10.1016/j.cca.2022.01.021 pmid: 35104464
[18]   Döbert M, Wright A, Varouxaki A N, et al. STATIN trial: predictive performance of competing-risks model in screening for pre-eclampsia at 35-37 weeks’ gestation. Ultrasound in Obstetrics & Gynecology, 2022, 59(1): 69-75.
[19]   Thomas C P, Andrews J I, Raikwar N S, et al. A recently evolved novel trophoblast-enriched secreted form of fms-like tyrosine kinase-1 variant is up-regulated in hypoxia and preeclampsia. The Journal of Clinical Endocrinology & Metabolism, 2009, 94(7): 2524-2530.
doi: 10.1210/jc.2009-0017
[20]   Kendall R L, Thomas K A. Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proceedings of the National Academy of Sciences, 1993, 90(22): 10705-10709.
[21]   Raikwar N S, Liu K Z, Thomas C P. Protein kinase C regulates FLT1 abundance and stimulates its cleavage in vascular endothelial cells with the release of a soluble PlGF/VEGF antagonist. Experimental Cell Research, 2013, 319(17): 2578-2587.
doi: 10.1016/j.yexcr.2013.07.005 pmid: 23911939
[22]   Sela S, Itin A, Natanson-Yaron S, et al. A novel human-specific soluble vascular endothelial growth factor receptor 1. Circulation Research, 2008, 102(12): 1566-1574.
doi: 10.1161/CIRCRESAHA.108.171504
[23]   Hu J W, Han J Z, Li H R, et al. Human embryonic kidney 293 cells: a vehicle for biopharmaceutical manufacturing, structural biology, and electrophysiology. Cells, Tissues, Organs, 2018, 205(1): 1-8.
doi: 10.1159/000485501 pmid: 29393161
[24]   Hornig C, Behn T, Bartsch W, et al. Detection and quantification of complexed and free soluble human vascular endothelial growth factor receptor-1 (sVEGFR-1) by ELISA. Journal of Immunological Methods, 1999, 226(1-2): 169-177.
pmid: 10410982
[25]   Shibuya M, Matsui H, Sasagawa T, et al. A simple detection method for the serum sFLT 1 protein in preeclampsia. Scientific Reports, 2021, 11(1): 20613.
doi: 10.1038/s41598-021-00152-6
[1] LI Shuai-peng,REN He,AN Zhan-fei,YANG Yan-kun,BAI Zhong-hu. The Development of Chemiluminescence Immunoassay Detection Method for Thrombomodulin[J]. China Biotechnology, 2021, 41(4): 30-36.
[2] CHEN Su-fang,XIA Ming-yin,ZENG Li-yan,AN Xiao-qin,TIAN Min-fang,PENG Jian. Recombinant Expression and Detection of Antimicrobial Activity of Cec4a[J]. China Biotechnology, 2021, 41(10): 12-18.
[3] LE Yi-lin,FU Yu,NI Li,SUN Jian-zhong. Expression and Characterization of a Thermostable Pyruvate Ferredoxin Oxidoreductase from the Hyperthermophile Thermotoga neapolitana and Its Application in Acetyl-CoA Production[J]. China Biotechnology, 2020, 40(3): 72-78.
[4] XUE Rui,YAO Lin,WANG Rui,LUO Zheng-shan,XU Hong,LI Sha. Advances and Applications of Recombinant Mussel Foot Proteins[J]. China Biotechnology, 2020, 40(11): 82-89.
[5] HAN Ting-han,ONG Xue-mei,ING Ya-fang,U Chen,ZHANG Kun-xiao,AO song,U Heng-hao. Cloning, Expression and Characterization of a Heat-Labile Uracil-DNA lycosylase from Scophthalmus maximus[J]. China Biotechnology, 2019, 39(10): 34-43.
[6] RAO Jing-jing, JING Yi-xian, ZOU Ming-yue, HU Xiao-lei, LIAO Fei, YANG Xiao-lan. Clone, Expression and Characterization of the Uricase from Meyerozyma guilliermondii[J]. China Biotechnology, 2017, 37(11): 74-82.
[7] ZENG Jie. Development and Application of L-Asparaginase with Better Performance and Advances in Recombinant Expression[J]. China Biotechnology, 2017, 37(11): 123-131.
[8] ZHAO Yi-jin, WANG Teng-fei, WANG Jun-qing, WANG Rui-ming. Surface Display of Tres Using CotC as a Molecular Vector on Bacillus subtilis Spores[J]. China Biotechnology, 2017, 37(1): 71-80.
[9] LI Meng-yue, WANG Teng-fei, WANG Jun-qing, ZHAO Yi-jin, CHENG Cheng, WANG Rui-ming. Expression of Trehalose Synthase Gene in Pichia pastoris[J]. China Biotechnology, 2016, 36(2): 73-80.
[10] DING Yi, WU Hai-ying, SHI Ji-ping, SUN Jun-song. Current Progress in Recombinant Systems for Expression of Hydrogenases[J]. China Biotechnology, 2015, 35(5): 109-118.
[11] YANG Bo, CHEN Hai-qin, SONG Yuan-da, ZHANG Hao, CHEN Wei. Study of the Enzymatic Function of Myosin Cross Reactive Antigen from Bifidobacterium animalis[J]. China Biotechnology, 2012, 32(12): 30-36.
[12] GAO Bing-miao, LI Bao-zhu, WU Yong, LIN Bo, ZHU Xiao-peng, ZHANGSUN Dong-ting, LUO Su-lan. Expression, Purification and Identfication of Recombinant Conotoxin GeXIVAWT[J]. China Biotechnology, 2012, 32(09): 34-40.
[13] WEI Hai-Chao, ZHANG Yan, FAN Yao-Chun, LI Chuan-Yi, WEN Yu-Ling, CHEN Yuan-Ding. Expression of NSP1 of a Group A Human Rotavirus and Immunological Properties[J]. China Biotechnology, 2010, 30(03): 15-21.
[14] Kun CAI Jun YIN Hui WANG. The Recombinant Expression and Receptor-binding activity of the B subunit of Shiga-like toxin type Ⅱ[J]. China Biotechnology, 2008, 28(10): 23-27.
[15] . Progress in the Study of Heparinases[J]. China Biotechnology, 2007, 27(8): 116-124.